Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
1.
Talanta ; 280: 126692, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39128313

RESUMEN

In the field of nucleic acid amplification assays, developing enzyme-free, easy-to-use, and highly sensitive amplification approaches remains a challenge. In this work, we synthesized a heterogeneous Cu2O nanocatalyst (hnCu2O) with different particle sizes and shapes, which was used for developing enzyme- and label-free nucleic acid amplification methods based on the nucleic acid-templated azide-alkyne cycloaddition (AAC) reaction catalyzed by hnCu2O. The hnCu2O exhibited size- and shape-dependent catalytic activity, with smaller sizes and spherical-like shapes exhibiting superior activity. Spherical-like hnCu2O (61 ± 8 nm) not only achieved a ligation yield of up to 84.2 ± 3.9 % in 3 min but also exhibited faster kinetics in the nucleic acid-templated hnCu2O-catalyzed AAC reaction, with a high reaction rate of 0.65 min-1 and a half-life of 1.07 ± 0.09 min. Based on this result, we developed nucleic acid-templated click ligation linear amplification reaction (NA-CLLAR) and nucleic acid-templated click ligation exponential amplification reaction (NA-CLEAR) approach. By combining the recognition (complementary to the target sequence) and signal output (split G-quadruplex sequence) elements into a DNA probe, the NA-CLLAR and NA-CLEAR fluorescence assays achieved highly specific detection of target nucleic acids, with a detection limit of 2.8 aM based on G-quadruplex-enhanced fluorescence. This work is a valuable reference and will inspire researchers to design enzyme-free nucleic acid signal amplification strategies by developing different types of Cu(I) catalysts with improved catalytic activity.

2.
J Food Sci ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042467

RESUMEN

Natural preservation materials have long been a focus of research in the quality control of fruits and vegetables. This study aimed to develop composite films with exceptional preservation properties by utilizing chitosan (CS) as the film-forming material and incorporating onion polysaccharide (ONP) as the active component. The CS-ONP composite films were prepared, and their performance and preservation effects were evaluated. The results demonstrated that increasing the ONP content significantly enhanced the shading, antimicrobial, and antioxidant capabilities of the CS-ONP composite films. Preservation experiments revealed that the CS-ONP composite films effectively delayed the quality decline of cherry tomatoes during storage. However, despite the improvements brought by ONP, certain drawbacks persisted, such as reduced mechanical properties and alterations in surface structure. In summary, the CS-ONP composite films exhibit promising potential as novel materials for fruit and vegetable preservation. PRACTICAL APPLICATION: The spoilage of fruits and vegetables can cause huge economic losses. This study addresses this challenge by using chitosan as the film-forming substrate and adding crude onion polysaccharide as the active ingredient to create composite films. The preservation effects of these films on cherry tomatoes were studied. Although only cherry tomatoes were tested in this study, the composite films demonstrated significant potential for broader applications in fruit and vegetable preservation.

3.
Int J Gen Med ; 17: 3039-3046, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006912

RESUMEN

Purpose: To explore the early diagnostic value of superb microvascular imaging (SMI) features within the rotator cuff gap for frozen shoulder. Patients and Methods: This prospective study enrolled patients with acute early-stage frozen shoulder seeking treatment at Zhabei Central Hospital in Jing'an District, Shanghai, between July 2021 and December 2022 were enrolled in this study. Healthy controls were collected in a 1:1 ratio from the same hospital's physical examination center. All participants underwent SMI and power Doppler ultrasound (PDUS) of the rotator cuff gap. Results: The study included 79 patients with frozen shoulder and 77 healthy controls. Compared with the healthy control group, the patient group had a higher proportion of hypoechoic rotator cuff gap (81.0% vs 48.1%, P<0.001), a thicker coracohumeral ligament (2.60±1.01 vs 2.03±0.97, P<0.001), a thicker glenohumeral joint capsule (3.10±0.99 vs 2.46±1.17, P<0.001), and elevated blood grading using SMI (P<0.001) and PDUS (P=0.014). The highest area under the curve (AUC) was observed for SMI blood flow grading (AUC=0.824, 95% CI: 0.755-0.880, P<0.001), resulting in 82% sensitivity and 77% specificity when using a cutoff of 1. SMI blood flow grading was associated with external rotation <30° (P=0.007) and abduction <30° (P=0.013) but not with internal rotation <30° (P=0.630) or flexion <30° (P=0.562). Conclusion: The grading of SMI blood flow may emerge as a valuable predictive indicator for the early stages of frozen shoulder. This simple ultrasound technique holds the potential to enhance the diagnostic process, enabling early initiation of treatment and potentially improving patient outcomes.

4.
Int Immunopharmacol ; 138: 112611, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38976947

RESUMEN

OBJECTIVE: Osteoporosis (OP) is a disease characterized by decreased bone mass, deteriorated microstructure, and increased fragility and fracture risk. The diagnosis and prevention of OP and its complications have become major public health challenges. Therefore, exploring the complex ecological connections between the immune and skeletal systems may provide new insights for clinical prevention and treatment strategies. METHODS: First, we performed single-cell RNA sequencing on human lumbar lamina tissue and conducted clustering and subgroup analysis of quality-controlled single-cell transcriptome data to identify target subgroups. Subsequently, enrichment analysis and pseudotime analysis were performed. In addition, we conducted in-depth studies on the gene regulatory network between different cell subgroups and the communication between bone immune cells. RESULTS: In this study, we identified several cell subgroups that may be involved in the progression of OP. For example, the CCL4+ NKT and CXCL8+ neutrophils subgroups promote OP progression by mediating an inflammatory environment that disrupts bone homeostasis, and the MNDA+ Mac subgroup promotes osteoclast differentiation to promote OP. Moreover, the TNFAIP6+ Obl, NR4A2+ B and HMGN2+ erythrocyte subgroups promoted the balance of bone metabolism and suppressed OP. In the cell communication network, Obl closely interacts with immune cell subgroups through the CXCR4-CXCL12, CTGF-ITGB2, and TNFSF14-TNFRSF14 axes. CONCLUSION: Our research revealed specific subgroups and intercellular interactions that play crucial roles in the pathogenesis of OP, providing potential new insights for more precise therapeutic interventions for OP.


Asunto(s)
Osteoporosis , Análisis de la Célula Individual , Humanos , Osteoporosis/inmunología , Osteoporosis/genética , Análisis de Secuencia de ARN , Sistema Inmunológico/inmunología , Transcriptoma , Femenino , Huesos/metabolismo , Huesos/inmunología , Huesos/patología , Redes Reguladoras de Genes , Osteoclastos/inmunología , Comunicación Celular , Masculino
5.
Int J Antimicrob Agents ; 64(3): 107265, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38964622

RESUMEN

More and more ceftazidime-avibactam-resistant KPC-producing Klebsiella pneumoniae have been reported with its widespread use, and the detection rate of KPC variants has increased dramatically. However, the evolutionary mechanism and fitness effects during KPC mutation remained unknown. Here, we report the complex in vivo evolutionary trajectories of two novel KPC variants, KPC-155 (L169P/GT242A) and KPC-185 (D179Y/GT242A), from K. pneumoniae in the same patient. The novel variants were shown to confer ceftazidime-avibactam resistance but restore carbapenem susceptibility based on the results of plasmid transformation assays, cloning experiments, and enzyme kinetic measurements. In vitro, competition experiments highlighted the adaptive advantage conferred by strains carrying these KPC variants, which could lead to the rapid spread of these ceftazidime-avibactam-resistant strains. The growth curve indicated that blaKPC-185 had better growth conditions at lower avibactam concentration compared to blaKPC-155, which was consistent with ceftazidime-avibactam use in vivo. In addition, replicative transposition of the IS26-flanked translocatable unit (IS26-ISKpn6-blaKPC-ISKpn27-IS26) also contributes to the blaKPC amplification and formation of two copies (blaKPC-2 and blaKPC-185), conferring both carbapenem and ceftazidime-avibactam resistance. However, strains with double copies showed reduced competitive advantage and configuration stability. The comparative plasmid analysis of IS26 group (IS26-blaKPC-IS26) and Tn1721 group (Tn1721-blaKPC-IS26) revealed that IS26-insertion could influence the distribution of resistance genes and ability of self-conjugation. The dynamic changes in blaKPC configuration highlight the need for consistent monitoring including antimicrobial susceptibility testing and determination of blaKPC subtypes - during clinical treatment, especially when ceftazidime-avibactam is administered.

6.
J Integr Neurosci ; 23(7): 127, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39082295

RESUMEN

BACKGROUND: This meta-analysis explores alterations in the gut microbiota of patients with Multiple Sclerosis (MS) using 16S ribosomal RNA (rRNA) gene sequencing. METHODS: Adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, our comprehensive review spanned major databases, including PubMed, Web of Science, Embase, Cochrane, and Ovid, targeting observational studies that implemented 16S rRNA gene sequencing on fecal specimens. The quality of these studies was meticulously evaluated using the Newcastle-Ottawa scale. RESULTS: Our search yielded 26 relevant studies conducted between 2015-2022, encompassing 2885 participants. No significant differences were observed in alpha diversity indices (Shannon, Chao1, Operational Taxonomic Units (OTU), and Simpson) between MS patients and controls in general. Nonetheless, subgroup analyses according to disease activity using the Shannon index highlighted a significant decrease in microbial diversity during MS's active phase. Similarly, an evaluation focusing on MS phenotype revealed diminished diversity in individuals with relapsing-remitting MS (RRMS). Microbial composition analysis revealed no consistent increase in pro-inflammatory Bacteroidetes or decrease in anti-inflammatory Firmicutes within the MS cohort. CONCLUSION: The gut microbiome's role in MS presents a complex panorama, where alterations in microbial composition might hold greater significance to disease mechanisms than diversity changes. The impact of clinical factors such as disease activity and phenotype are moderately significant, underscoring the need for further research to elucidate these relationships. Prospective research should employ longitudinal methodologies to elucidate the chronological interplay among gut microbiota, disease evolution, and therapeutic strategies.


Asunto(s)
Microbioma Gastrointestinal , Esclerosis Múltiple , ARN Ribosómico 16S , Humanos , ARN Ribosómico 16S/análisis , Esclerosis Múltiple/microbiología
7.
bioRxiv ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39071437

RESUMEN

Methylation patterns in bacteria can be used to study Restriction-Modification (RM) or other defense systems with novel properties. While m4C and m6A methylation is well characterized mainly through PacBio sequencing, the landscape of m5C methylation is under-characterized. To bridge this gap, we performed RIMS-seq2 on microbiomes composed of resolved assemblies of distinct genomes through proximity ligation. This high-throughput approach enables the identification of m5C methylated motifs and links them to cognate methyltransferases directly on native microbiomes without the need to isolate bacterial strains. Methylation patterns can also be identified on viral DNA and compared to host DNA, strengthening evidence for virus-host interaction. Applied to three different microbiomes, the method unveils over 1900 motifs that were deposited in REBASE. The motifs include a novel 8-base recognition site (CATm5CGATG) that was experimentally validated by characterizing its cognate methyltransferase. Our findings suggest that microbiomes harbor arrays of untapped m5C methyltransferase specificities, providing insights to bacterial biology and biotechnological applications.

8.
FEBS J ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38872483

RESUMEN

Discoidin, CUB, LCCL domain-containing 2 (DCBLD2) is a type I transmembrane protein with a similar structure to neuropilin, which acts as a co-receptor for certain receptor tyrosine kinases (RTKs). The insulin receptor is an RTK and plays a critical role in endothelial cell function and glycolysis. However, how and whether DCBLD2 regulates insulin receptor activity in endothelial cells is poorly understood. Diabetes was induced through treatment of Dcbld2 global-genome knockout mice and endothelium-specific knockout mice with streptozotocin. Vascular ultrasound, vascular tension test, and hematoxylin and eosin staining were performed to assess endothelial function and aortic remodeling. Glycolytic rate assays, real-time PCR and western blotting were used to investigate the effects of DCBLD2 on glycolytic activity and insulin receptor (InsR)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in endothelial cells. Co-immunoprecipitation was used to assess the effects of DCBLD2 on insulin receptor endocytosis and recycling. Membrane and cytoplasmic proteins were isolated to determine whether DCBLD2 could affect the localization of the insulin receptor. We found that Dcbld2 deletion exacerbated endothelial dysfunction and vascular remodeling in diabetic mice. Both Dcbld2 knockdown and Dcbld2 deletion inhibited glycolysis and the InsR/PI3K/Akt signaling pathway in endothelial cells. Furthermore, Dcbld2 deletion inhibited insulin receptor recycling. Taken together, Dcbld2 deficiency exacerbated diabetic endothelial dysfunction and vascular remodeling by inhibiting the InsR/PI3K/Akt pathway in endothelial cells through the inhibition of Rab11-dependent insulin receptor recycling. Our data suggest that DCBLD2 is a potential therapeutic target for diabetes and cardiovascular diseases.

9.
Int J Antimicrob Agents ; 64(2): 107228, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823494

RESUMEN

The rapid dissemination of carbapenem-resistant Enterobacterales (CRE) especially carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a great threat to global public health. Ceftazidime-avibactam, a novel ß-lactam/ß-lactamase inhibitor combination, has been widely used due to its excellent antibacterial activity against KPC-producing K. pneumoniae. However, several resistance mechanisms have been reported since its use. Here, we conducted a series of in vitro experiments to reveal and demonstrate the dynamic evolution of ceftazidime-avibactam resistance including interspecies IncX3_NDM-5 plasmid transfer between Enterobacter cloacae and K. pneumoniae and blaKPC mutation from blaKPC-2 to blaKPC-33. Through the analysis of conjugation frequency and fitness cost, the IncX3_NDM-5 plasmid in this study showed strong transmissibility and stability in E. coli EC600 and clinical strain K. pneumoniae 5298 as recipient strain. With increasing ceftazidime-avibactam concentration, the conjugation frequency remained at 10-3-10-5, while the mutation frequency of K. pneumoniae 5298 was 10-6-10-8 at the same concentration. Further plasmid analysis (the IncX3_NDM plasmid from this study and other 658 plasmids from the NCBI database) revealed the diverse origin and genetic structure of blaNDM-5 carrying plasmids. E. coli (42.9%), China (43.9%), IncX3 (66.6%) are the most common strains, regions, and Inc types respectively. By analysing of genetic environment detected in IncX3 plasmids, the dominant structures (168/258, 65.1%) were identified: ISKox3-IS26-blaNDM-5-IS5-ISAba125-Tn3000-Tn3. In additon, several structural variations were found in the core gene structure. In conclusion, the high fitness and transmissibility of the IncX3_NDM-5 plasmids were noteworthy. More importantly, the diverse ceftazidime-avibactam resistance mechanisms including blaNDM-5 tranfer and blaKPC-2 mutation highlighted the importance of the continuous monitoring of antimicrobial susceptibility and carbapenemases subtype during ceftazidime-avibactam treatment.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Ceftazidima , Combinación de Medicamentos , Farmacorresistencia Bacteriana Múltiple , Enterobacter cloacae , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Mutación , Plásmidos , beta-Lactamasas , Ceftazidima/farmacología , Compuestos de Azabiciclo/farmacología , Plásmidos/genética , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , beta-Lactamasas/genética , Antibacterianos/farmacología , Enterobacter cloacae/genética , Enterobacter cloacae/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/tratamiento farmacológico , Proteínas Bacterianas/genética , Transferencia de Gen Horizontal , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos
10.
Anal Chem ; 96(24): 10028-10037, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38853671

RESUMEN

Nucleic acids play a pivotal role in the diagnosis of diseases. However, rapid, cost-efficient, and ultrasensitive identification of nucleic acid targets still represents a significant challenge. Herein, we describe an enzyme-free DNA amplification method capable of achieving accurate and ultrasensitive nucleic acid detection via DNA-templated click ligation chain reaction (DT-CLCR) catalyzed by a heterogeneous nanocatalyst made of Cu2O (hnCu2O). This hnCu2O-DT-CLCR method is built on two cross-amplifying hnCu2O-catalyzed DNA-templated azide-alkyne cycloaddition-driven DNA ligation reactions that boast a fast reaction rate and a high DNA ligation yield in minutes, enabling rapid exponential amplification of specific DNA targets. This newly developed hnCu2O-DT-CLCR-enabled DNA amplification strategy is further integrated with two signal reporting mechanisms to achieve low-cost and easy-to-use biosensors: an electrochemical sensor through the conjugation of a methylene blue redox reporter to a DNA probe used in hnCu2O-DT-CLCR and a colorimetric sensor through the incorporation of the split-to-intact G-quadruplex DNAzyme encoded into hnCu2O-DT-CLCR. Both sensors are able to achieve specific detection of the intended DNA target with a limit of detection at aM ranges, even when challenged in complex biological matrices. The combined hnCu2O-DT-CLCR and sensing strategies offer attractive universal platforms for enzyme-free and yet efficient detection of specific nucleic acid targets.


Asunto(s)
Química Clic , Cobre , ADN , Técnicas de Amplificación de Ácido Nucleico , Cobre/química , ADN/química , Catálisis , Humanos , Técnicas Biosensibles/métodos , Límite de Detección , ADN Catalítico/química , ADN Catalítico/metabolismo , Azidas/química , Colorimetría/métodos , Técnicas Electroquímicas/métodos , Reacción de Cicloadición
11.
Int J Antimicrob Agents ; 64(2): 107258, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914142

RESUMEN

Tandem amplification of carbapenemase genes increases gene copy number and enhances carbapenem resistance. These amplifications are often heterogeneous, transient, and located on plasmids, which also contribute to heteroresistance. Amplification of encoding genes is especially important for enzymes with low hydrolysis activity, which are often overlooked. Here, we reported an intrinsic oxacillinase oxaAb amplification flanked by ISAba1. The amplification is in the chromosome and contains up to 25 repeats. We provided genomic, transcriptomic, and proteomic evidence that the amplification resulted in oxacillinase overproduction. Notably, no point mutations of oxaAb were found during the amplification process. Strains of Acinetobacter baumannii with intrinsic amplified or external transformed ISAba1-oxaAb exhibited higher meropenem hydrolysis activity. Furthermore, the number of repeats in the amplification decreased gradually over a period of 21 d cultured with carbapenem withdrawal. However, upon re-exposure to meropenem, the ISAba1 flanked oxaAb responded rapidly, with repeat numbers reaching or exceeding pre-carbapenem withdrawal levels within 24 h. Taken together, these findings suggest that ISAba1-mediated gene amplification and overproduction of intrinsic low-activity oxacillinase oxaAb resulted in carbapenem resistance.


Asunto(s)
Acinetobacter baumannii , Antibacterianos , Carbapenémicos , beta-Lactamasas , Acinetobacter baumannii/genética , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/enzimología , beta-Lactamasas/genética , Carbapenémicos/farmacología , Antibacterianos/farmacología , Amplificación de Genes , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/genética , Humanos , Meropenem/farmacología , Elementos Transponibles de ADN/genética
12.
Toxics ; 12(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787088

RESUMEN

Effluent discharged from urban wastewater treatment plants (WWTPs) is a major source of emerging contaminants (ECs) requiring effective regulation. To this end, we collected discharge datasets of pharmaceuticals (PHACs) and endocrine-disrupting chemicals (EDCs), representing two primary categories of ECs, from Chinese WWTP effluent from 2012 to 2022 to establish an exposure database. Moreover, high-risk ECs' long-term water quality criteria (LWQC) were derived using the species sensitivity distribution (SSD) method. A total of 140 ECs (124 PHACs and 16 EDCs) were identified, with concentrations ranging from N.D. (not detected) to 706 µg/L. Most data were concentrated in coastal regions and Gansu, with high ecological risk observed in Gansu, Hebei, Shandong, Guangdong, and Hong Kong. Using the assessment factor (AF) method, 18 high-risk ECs requiring regulation were identified. However, only three of them, namely carbamazepine, ibuprofen, and bisphenol-A, met the derivation requirements of the SSD method. The LWQC for these three ECs were determined as 96.4, 1010, and 288 ng/L, respectively. Exposure data for carbamazepine and bisphenol-A surpassed their derived LWQC, indicating a need for heightened attention to these contaminants. This study elucidates the occurrence and risks of ECs in Chinese WWTPs and provides theoretical and data foundations for EC management in urban sewage facilities.

13.
Cell Commun Signal ; 22(1): 278, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762737

RESUMEN

BACKGROUND: While de novo cholesterol biosynthesis plays a crucial role in chemotherapy resistance of colorectal cancer (CRC), the underlying molecular mechanism remains poorly understood. METHODS: We conducted cell proliferation assays on CRC cells with or without depletion of squalene epoxidase (SQLE), with or without 5-fluorouracil (5-FU) treatment. Additionally, a xenograft mouse model was utilized to explore the impact of SQLE on the chemosensitivity of CRC to 5-FU. RNA-sequencing analysis and immunoblotting analysis were performed to clarify the mechanism. We further explore the effect of SQLE depletion on the ubiquitin of NF-κB inhibitor alpha (IκBα) and (S)-2,3-epoxysqualene on the binding of IκBα to beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) by using immunoprecipitation assay. In addition, a cohort of 272 CRC patients were selected for our clinical analyses. RESULTS: Mechanistically, (S)-2,3-epoxysqualene promotes IκBα degradation and subsequent NF-κB activation by enhancing the interaction between BTRC and IκBα. Activated NF-κB upregulates the expression of baculoviral IAP repeat containing 3 (BIRC3), sustains tumor cell survival after 5-FU treatment and promotes 5-FU resistance of CRC in vivo. Notably, the treatment of terbinafine, an inhibitor of SQLE commonly used as antifungal drug in clinic, enhances the sensitivity of CRC to 5-FU in vivo. Additionally, the expression of SQLE is associated with the prognosis of human CRC patients with 5-FU-based chemotherapy. CONCLUSIONS: Thus, our finding not only demonstrates a new role of SQLE in chemoresistance of CRC, but also reveals a novel mechanism of (S)-2,3-epoxysqualene-dependent NF-κB activation, implicating the combined potential of terbinafine for 5-FU-based CRC treatment.


Asunto(s)
Neoplasias Colorrectales , Resistencia a Antineoplásicos , Fluorouracilo , FN-kappa B , Escualeno-Monooxigenasa , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Humanos , Escualeno-Monooxigenasa/metabolismo , Escualeno-Monooxigenasa/genética , FN-kappa B/metabolismo , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Animales , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Ratones , Línea Celular Tumoral , Ratones Desnudos , Ratones Endogámicos BALB C , Femenino , Masculino , Proliferación Celular/efectos de los fármacos , Inhibidor NF-kappaB alfa/metabolismo , Inhibidor NF-kappaB alfa/genética , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Sensors (Basel) ; 24(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732893

RESUMEN

An abnormal level of dopamine (DA), a kind of neurotransmitter, correlates with a series of diseases, including Parkinson's disease, Willis-Ekbom disease, attention deficit hyperactivity disorder, and schizophrenia. Hence, it is imperative to achieve a precise, rapid detection method in clinical medicine. In this study, we synthesized nanocomposite carbon aerogels (CAs) doped with iron and iron carbide, based on algae residue-derived biomass materials, using Fe(NO3)3 as the iron source. The modified glassy carbon electrode (GCE) for DA detection, denoted as CAs-Fe/GCE, was prepared through surface modification with this composite material. X-ray photoelectron spectroscopy and X-ray diffraction characterization confirmed the successful doping of iron into the as-prepared CAs. Additionally, the electrochemical behavior of DA on the modified electrode surface was investigated and the results demonstrate that the addition of the CAs-Fe promoted the electron transfer rate, thereby enhancing their sensing performance. The fabricated electrochemical DA biosensor exhibits an accurate detection of DA in the concentration within the range of 0.01~200 µM, with a detection limit of 0.0033 µM. Furthermore, the proposed biosensor is validated in real samples, showing its high applicability for the detection of DA in beverages.


Asunto(s)
Técnicas Biosensibles , Carbono , Dopamina , Técnicas Electroquímicas , Electrodos , Hierro , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Dopamina/análisis , Dopamina/química , Carbono/química , Hierro/química , Técnicas Electroquímicas/métodos , Geles/química , Límite de Detección , Espectroscopía de Fotoelectrones , Nanocompuestos/química
15.
Emerg Microbes Infect ; 13(1): 2356146, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38743401

RESUMEN

Ceftazidime-avibactam (CZA) is employed for the treatment of infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-KP). Resistance to CZA is frequently linked to point mutations in the blaKPC. We conducted in vitro simulations of in vivo blaKPC mutations using CZA. Four pre-therapy KPC-KP isolates (K1, K2, K3, and K4) were evaluated, all initially exhibited susceptibility to CZA and produced KPC-2. The crucial distinction was that following CZA treatment, the blaKPC-2 mutated in K1, K2, and K3, rendering them resistant to CZA, while K4 achieved microbiological clearance, and blaKPC-2 remained unaltered. The induction assay identified various blaKPC-2 variants, including blaKPC-25, blaKPC-127, blaKPC-100, blaKPC-128, blaKPC-137, blaKPC-138, blaKPC-144 and blaKPC-180. Our findings suggest that the resistance of KPC-KP to CZA primarily results from the emergence of KPC variants, complemented by increased blaKPC expression. A close correlation exists between avibactam concentration and the rate of increased CZA minimum Inhibitory concentration, as well as blaKPC mutation. Inadequate avibactam concentration is more likely to induce resistance in strains against CZA, there is also a higher likelihood of mutation in the blaKPC-2 and the optimal avibactam ratio remains to be determined. Simultaneously, we selected a blaKPC-33-producing K. pneumoniae strain (mutated from blaKPC-2) and induced it with imipenem and meropenem, respectively. The blaKPC-2 was detected during the process, indicating that the mutation is reversible. Clinical use of carbapenems to treat KPC variant strains increases the risk of infection, as the gene can mutate back to blaKPC-2, rendering the strain even more cross-resistant to carbapenems and CZA.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Proteínas Bacterianas , Ceftazidima , Combinación de Medicamentos , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , Ceftazidima/farmacología , Compuestos de Azabiciclo/farmacología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Mutación , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/tratamiento farmacológico , Fenotipo , Hidrólisis , Cinética
16.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 753-757, 2024 Jun 10.
Artículo en Chino | MEDLINE | ID: mdl-38818564

RESUMEN

OBJECTIVE: To carry out genetic analysis on two families with carriers of small terminal translocations using karyotyping analysis and genomic copy number variation sequencing (CNV-seq). METHODS: Two couples undergoing prenatal diagnosis at the Tianjin Central Hospital of Obstetrics and Gynecology respectively on April 12, 2020 and December 17, 2021 were selected as the study subjects. With informed consent, amniotic fluid and peripheral blood samples were collected and subjected to conventional karyotyping and CNV-seq analysis for the detection of chromosomal microdeletion/duplications. RESULTS: Both couples had given births to children with chromosomal aberrations previously, and both fetuses were found to have abnormal karyotypes. CNV-seq showed that they had harbored microdeletion/duplications, and their mothers had both carried balanced translocations involving terminal fragments of chromosomes. CONCLUSION: For fetuses with small chromosomal segmental abnormalities, their parental origin should be traced, and the diagnosis should be confirmed with combined genetic techniques.


Asunto(s)
Variaciones en el Número de Copia de ADN , Cariotipificación , Diagnóstico Prenatal , Humanos , Diagnóstico Prenatal/métodos , Femenino , Embarazo , Masculino , Adulto , Aberraciones Cromosómicas , Translocación Genética , Pruebas Genéticas/métodos , Deleción Cromosómica
17.
Sleep ; 47(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38695327

RESUMEN

Although rapid eye movement (REM) sleep is conventionally treated as a unified state, it comprises two distinct microstates: phasic and tonic REM. Recent research emphasizes the importance of understanding the interplay between these microstates, hypothesizing their role in transient shifts between sensory detachment and external awareness. Previous studies primarily employed linear metrics to probe cognitive states, such as oscillatory power, while in this study, we adopt Lempel-Ziv Complexity (LZC), to examine the nonlinear features of electroencephalographic (EEG) data from the REM microstates and to gain complementary insights into neural dynamics during REM sleep. Our findings demonstrate a noteworthy reduction in LZC during phasic REM compared to tonic REM states, signifying diminished EEG complexity in the former. Additionally, we noted a negative correlation between decreased LZC and delta band power, along with a positive correlation with alpha band power. This study highlights the potential of nonlinear EEG metrics, particularly LZC, in elucidating the distinct features of REM microstates. Overall, this research contributes to advancing our understanding of the complex dynamics within REM sleep and opens new avenues for exploring its implications in both clinical and nonclinical contexts.


Asunto(s)
Electroencefalografía , Sueño REM , Humanos , Sueño REM/fisiología , Electroencefalografía/métodos , Masculino , Femenino , Adulto , Polisomnografía , Adulto Joven , Dinámicas no Lineales , Encéfalo/fisiología
18.
Angew Chem Int Ed Engl ; 63(34): e202406650, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38818631

RESUMEN

Dispersion of single atoms (SAs) in the host is important for optimizing catalytic activity. Herein, we propose a novel strategy to tune oxygen vacancies in CeO2-X directionally anchoring the single atom platinum (PtSA), which is uniformly dispersed on the rGO. The catalyst's performance for the hydrogen evolution reaction (HER) can be enhanced by controlling different densities of CeO2-X in rGO. The PtSA performs best optimally densified and loaded on homogeneous and moderately densified CeO2-X/rGO (PtSA-M-CeO2-X/rGO). It exhibited higher activity in HER with an overpotential of 25 mV at 0.5 M H2SO4 and 33 mV at 1 KOH than that of almost reported electrocatalysts. Furthermore, it exhibited stability for 90 hours at -100 mA cm-2 in 1 KOH and -150 mA cm-2 in 0.5 M H2SO4 conditions, respectively. Through comprehensive experiments and theoretical calculations, the suitable dispersion density of PtSA on the defects of CeO2-X with more active sites gives the potential for practical applications. This research paves the way for developing single-atom catalysts with exceptional catalytic activity and stability, holding promise in advanced green energy conversion through defects engineering.

19.
Int J Antimicrob Agents ; 64(2): 107211, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38795927

RESUMEN

Providencia species are important opportunistic pathogens for humans and are associated with several infectious diseases. In this study, we found three clinical strains belonging to a novel Providencia species, namely Providencia huashanensis, including strains CRE-3FA-0001T, CRE-138-0026, and CRE-138-0111. These strains were recovered from three patients, and all of them were associated with nosocomial infections, including incision infection, urinary tract infection, and intracranial infection. The three strains showed high-level resistance to many types of antimicrobials, including amikacin, aztreonam, ceftazidime, cefepime, ciprofloxacin, colistin, polymyxin B, imipenem, meropenem, ceftazidime-avibactam, imipenem-relebactam. Investigation of the resistance mechanism revealed that acquired resistance genes such as blaKPC, blaNDM, blaPER, blaOXA, aac, ant, and qnrD, played an important role in the multi-drug-resistant phenotype for the three strains. The phylogenetic trees were reconstructed based on the 16S rRNA gene sequences, multi-locus sequence analysis, and core single nucleotide polymorphisms. The genome sequence of the strains had a range of 83.5%-85.8% average nucleotide identity and 21%-25.5% in silico DNA-DNA hybridization scores with other Providencia type strains. The average nucleotide identity and in silico DNA-DNA hybridization values and the phylogenetic trees indicated that the strains CRE-3FA-0001T, CRE-138-0026, and CRE-138-0111 strains should be considered as a novel species of the genus Providencia, for which the name P. huashanensis sp. nov. is proposed. The type strain is CRE-3FA-0001T = China Center for Type Culture Collection AB 2023186T = Korean Collection for Type Cultures 8373T.


Asunto(s)
Antibacterianos , Infección Hospitalaria , Farmacorresistencia Bacteriana Múltiple , Infecciones por Enterobacteriaceae , Pruebas de Sensibilidad Microbiana , Filogenia , Providencia , ARN Ribosómico 16S , Humanos , Antibacterianos/farmacología , Infección Hospitalaria/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Enterobacteriaceae/microbiología , Tipificación de Secuencias Multilocus , Polimorfismo de Nucleótido Simple , Providencia/genética , Providencia/efectos de los fármacos , Providencia/aislamiento & purificación , ARN Ribosómico 16S/genética , Infecciones Urinarias/microbiología
20.
J Clin Microbiol ; 62(7): e0015424, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38809033

RESUMEN

The increasing use of ceftazidime-avibactam has led to the emergence of a wide range of ceftazidime-avibactam-resistant blaKPC-2 variants. Particularly, the conventional carbapenemase phenotypic assay exhibited a high false-negative rate for KPC-2 variants. In this study, three colloidal gold immunoassays, including the Gold Mountainriver CGI test, Dynamiker CGI test and NG-Test CARBA5, and GeneXpert Carba-R, were used to detect the presence of KPC-2 carbapenemase and its various variants in 42 Klebsiella pneumoniae strains. These strains covered blaKPC-2 (13/42) and 16 other blaKPC-2 variants including blaKPC-12 (1/42), blaKPC-23 (1/42), blaKPC-25 (1/42), blaKPC-33 (6/42), blaKPC-35 (1/42), blaKPC-44 (1/42), blaKPC-71 (1/42), blaKPC-76 (8/42), blaKPC-78 (1/42), blaKPC-79 (1/42), blaKPC-100 (1/42), blaKPC-127 (1/42), blaKPC-128 (1/42), blaKPC-144 (1/42), blaKPC-157 (2/42), and blaKPC-180 (1/42). For KPC-2 strains, all four assays showed 100% negative percentage agreement (NPA) and 100% positive percentage agreement (PPA) with sequencing results. For all 16 KPC-2 variants, GeneXpert Carba-R showed 100% NPA and 100% PPA, and the three colloidal gold immunoassays showed 100% NPA, while the PPAs of the Gold Mountainriver CGI test, Dynamiker CGI test, and NG-Test CARBA5 were 87.5%, 87.5%, and 68.8%, respectively. We also found a correlation between the mutation site in the amino acid of the variants and false-negative results by colloidal gold immunoassays. In conclusion, the GeneXpert Carba-R has been proven to be a reliable method in detecting KPC-2 and its variants, and the colloidal gold immunoassay tests offer a practical and cost-effective approach for their detection. For the sample with a negative result by a colloidal gold immunoassay test but not matching the drug-resistant phenotype, it is recommended to retest using another type of kit or the GeneXpert Carba-R assay, which can significantly improve the accuracy of detection.


Asunto(s)
Oro Coloide , Infecciones por Klebsiella , Klebsiella pneumoniae , beta-Lactamasas , beta-Lactamasas/genética , Klebsiella pneumoniae/genética , Inmunoensayo/métodos , Humanos , Oro Coloide/química , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/diagnóstico , Sensibilidad y Especificidad , Proteínas Bacterianas/genética , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA