Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
J Nutr Health Aging ; 28(7): 100284, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38833765

RESUMEN

BACKGROUND: As the important factors in cognitive function, dietary habits and metal exposures are interactive with each other. However, fewer studies have investigated the interaction effect of them on cognitive dysfunction in older adults. METHODS: 2,445 registered citizens aged 60-85 years from 51 community health centers in Luohu District, Shenzhen, were recruited in this study based on the Chinese older adult cohort. All subjects underwent physical examination and Mini-cognitive assessment scale. A semi quantitative food frequency questionnaire was used to obtain their food intake frequency, and 21 metal concentrations in their urine were measured. RESULTS: Elastic-net regression model, a machine learning technique, identified six variables that were significantly associated with cognitive dysfunction in older adults. These variables included education level, gender, urinary concentration of arsenic (As) and cadmium (Cd), and the frequency of monthly intake of egg and bean products. After adjusting for multiple factors, As and Cd concentrations were positively associated with increased risk of mild cognitive impairment (MCI) in the older people, with OR values of 1.19 (95% CI: 1.05-1.42) and 1.32 (95% CI: 1.01-1.74), respectively. In addition, older adults with high frequency of egg intake (≥30 times/month) and bean products intake (≥8 times/month) had a reduced risk of MCI than those with low protein egg intake (<30 times/month) and low bean products intake (<8 times/month), respectively. Furthermore, additive interaction were observed between the As exposure and egg products intake, as well as bean products. Cd exposure also showed additive interactions with egg and bean products intake. CONCLUSIONS: The consumption of eggs and bean products, as well as the levels of exposure to the heavy metals Cd and As, have been shown to have a substantial influence on cognitive impairment in the elderly population.


Asunto(s)
Arsénico , Cadmio , Cognición , Disfunción Cognitiva , Dieta , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Arsénico/orina , Cadmio/orina , China/epidemiología , Cognición/efectos de los fármacos , Estudios de Cohortes , Pueblos del Este de Asia , Huevos , Factores de Riesgo
2.
CNS Neurosci Ther ; 30(6): e14692, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38872258

RESUMEN

AIM: Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease characterized by progressive death of upper and lower motor neurons, leading to generalized muscle atrophy, paralysis, and even death. Mitochondrial damage and neuroinflammation play key roles in the pathogenesis of ALS. In the present study, the efficacy of A-1, a derivative of arctigenin with AMP-activated protein kinase (AMPK) and silent information regulator 1 (SIRT1) activation for ALS, was investigated. METHODS: A-1 at 33.3 mg/kg was administrated in SOD1G93A transgenic mice orally from the 13th week for a 6-week treatment period. Motor ability was assessed before terminal anesthesia. Muscle atrophy and fibrosis, motor neurons, astrocytes, and microglia in the spinal cord were evaluated by H&E, Masson, Sirius Red, Nissl, and immunohistochemistry staining. Protein expression was detected with proteomics analysis, Western blotting, and ELISA. Mitochondrial adenosine triphosphate (ATP) and malondialdehyde (MDA) levels were measured using an assay kit. RESULTS: A-1 administration in SOD1G93A mice enhanced mobility, decreased skeletal muscle atrophy and fibrosis, mitigated loss of spinal motor neurons, and reduced glial activation. Additionally, A-1 treatment improved mitochondrial function, evidenced by elevated ATP levels and increased expression of key mitochondrial-related proteins. The A-1 treatment group showed decreased levels of IL-1ß, pIκBα/IκBα, and pNF-κB/NF-κB. CONCLUSIONS: A-1 treatment reduced motor neuron loss, improved gastrocnemius atrophy, and delayed ALS progression through the AMPK/SIRT1/PGC-1α pathway, which promotes mitochondrial biogenesis. Furthermore, the AMPK/SIRT1/IL-1ß/NF-κB pathway exerted neuroprotective effects by reducing neuroinflammation. These findings suggest A-1 as a promising therapeutic approach for ALS.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Esclerosis Amiotrófica Lateral , Furanos , Interleucina-1beta , Ratones Transgénicos , FN-kappa B , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Ratones , FN-kappa B/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Furanos/farmacología , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/metabolismo , Interleucina-1beta/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Lignanos/farmacología , Lignanos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Masculino , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Neuronas Motoras/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Médula Espinal/metabolismo
3.
Front Pharmacol ; 15: 1351792, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919259

RESUMEN

Alzheimer's disease (AD) is one of the most common chronic neurodegenerative diseases. Hyperphosphorylated tau plays an indispensable role in neuronal dysfunction and synaptic damage in AD. Proteolysis-targeting chimeras (PROTACs) are a novel type of chimeric molecule that can degrade target proteins by inducing their polyubiquitination. This approach has shown promise for reducing tau protein levels, which is a potential therapeutic target for AD. Compared with traditional drug therapies, the use of PROTACs to reduce tau levels may offer a more specific and efficient strategy for treating AD, with fewer side effects. In the present study, we designed and synthesized a series of small-molecule PROTACs to knock down tau protein. Of these, compound C8 was able to lower both total and phosphorylated tau levels in HEK293 cells with stable expression of wild-type full-length human tau (termed HEK293-htau) and htau-overexpressed mice. Western blot findings indicated that C8 degraded tau protein through the ubiquitin-proteasome system in a time-dependent manner. In htau-overexpressed mice, the results of both the novel object recognition and Morris water maze tests revealed that C8 markedly improved cognitive function. Together, our findings suggest that the use of the small-molecule PROTAC C8 to degrade phosphorylated tau may be a promising therapeutic strategy for AD.

4.
J Alzheimers Dis ; 99(4): 1303-1316, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38759018

RESUMEN

Background: Anxiety and social withdrawal are highly prevalent among patients with Alzheimer's disease (AD). However, the neural circuit mechanisms underlying these symptoms remain elusive, and there is a need for effective prevention strategies. Objective: This study aims to elucidate the neural circuitry mechanisms underlying social anxiety in AD. Methods: We utilized 5xFAD mice and conducted a series of experiments including optogenetic manipulation, Tandem Mass Tag-labeled proteome analysis, behavioral assessments, and immunofluorescence staining. Results: In 5xFAD mice, we observed significant amyloid-ß (Aß) accumulation in the anterior part of basolateral amygdala (aBLA). Behaviorally, 6-month-old 5xFAD mice displayed excessive social avoidance during social interaction. Concurrently, the pathway from aBLA to ventral hippocampal CA1 (vCA1) was significantly activated and exhibited a disorganized firing patterns during social interaction. By optogenetically inhibiting the aBLA-vCA1 pathway, we effectively improved the social ability of 5xFAD mice. In the presence of Aß accumulation, we identified distinct changes in the protein network within the aBLA. Following one month of administration of Urolithin A (UA), we observed significant restoration of the abnormal protein network within the aBLA. UA treatment also attenuated the disorganized firings of the aBLA-vCA1 pathway, leading to an improvement in social ability. Conclusions: The aBLA-vCA1 circuit is a vulnerable pathway in response to Aß accumulation during the progression of AD and plays a crucial role in Aß-induced social anxiety. Targeting the aBLA-vCA1 circuit and UA administration are both effective strategies for improving the Aß-impaired social ability.


Asunto(s)
Péptidos beta-Amiloides , Complejo Nuclear Basolateral , Región CA1 Hipocampal , Cumarinas , Ratones Transgénicos , Animales , Ratones , Péptidos beta-Amiloides/metabolismo , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/efectos de los fármacos , Complejo Nuclear Basolateral/metabolismo , Complejo Nuclear Basolateral/efectos de los fármacos , Cumarinas/farmacología , Enfermedad de Alzheimer/metabolismo , Masculino , Conducta Social , Modelos Animales de Enfermedad , Ansiedad/metabolismo , Interacción Social/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Optogenética
5.
Front Pharmacol ; 15: 1336232, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708081

RESUMEN

Background: Chrysin (5,7-dihydroxyflavone) is a natural flavonoid that has been reported as a potential treatment for non-alcoholic fatty liver disease (NAFLD). However, extensive phase II metabolism and poor aqueous solubility led to a decrease in the chrysin concentration in the blood after oral administration, limiting its pharmacological development in vivo. Methods: In the present study, we synthesized a novel chrysin derivative prodrug (C-1) to address this issue. We introduced a hydrophilic prodrug group at the 7-position hydroxyl group, which is prone to phase II metabolism, to improve water solubility and mask the metabolic site. Further, we evaluated the ameliorative effects of C-1 on NAFLD in vitro and in vivo by NAFLD model cells and db/db mice. Results: In vitro studies indicated that C-1 has the ability to ameliorate lipid accumulation, cellular damage, and oxidative stress in NAFLD model cells. In vivo experiments showed that oral administration of C-1 at a high dose (69.3 mg/kg) effectively ameliorated hyperlipidemia and liver injury and reduced body weight and liver weight in db/db mice, in addition to alleviating insulin resistance. Proteomic analysis showed that C-1 altered the protein expression profile in the liver and particularly improved the expression of proteins associated with catabolism and metabolism. Furthermore, in our preliminary pharmacokinetic study, C-1 showed favorable pharmacokinetic properties and significantly improved the oral bioavailability of chrysin. Conclusion: Our data demonstrated that C-1 may be a promising agent for NAFLD therapy.

6.
Neuromolecular Med ; 26(1): 9, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568291

RESUMEN

Aggregation of α-synuclein (α-syn) and α-syn cytotoxicity are hallmarks of sporadic and familial Parkinson's disease (PD). Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent enhancement of the expression of the 20S proteasome core particles (20S CPs) and regulatory particles (RPs) increases proteasome activity, which can promote α-syn clearance in PD. Activation of peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) may reduce oxidative stress by strongly inducing Nrf2 gene expression. In the present study, tetramethylpyrazine nitrone (TBN), a potent-free radical scavenger, promoted α-syn clearance by the ubiquitin-proteasome system (UPS) in cell models overexpressing the human A53T mutant α-syn. In the α-syn transgenic mice model, TBN improved motor impairment, decreased the products of oxidative damage, and down-regulated the α-syn level in the serum. TBN consistently up-regulated PGC-1α and Nrf2 expression in tested models of PD. Additionally, TBN similarly enhanced the proteasome 20S subunit beta 8 (Psmb8) expression, which is linked to chymotrypsin-like proteasome activity. Furthermore, TBN increased the mRNA levels of both the 11S RPs subunits Pa28αß and a proteasome chaperone, known as the proteasome maturation protein (Pomp). Interestingly, specific siRNA targeting of Nrf2 blocked TBN's effects on Psmb8, Pa28αß, Pomp expression, and α-syn clearance. In conclusion, TBN promotes the clearance of α-syn via Nrf2-mediated UPS activation, and it may serve as a potentially disease-modifying therapeutic agent for PD.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Complejo de la Endopetidasa Proteasomal , Pirazinas , Humanos , Animales , Ratones , Factor 2 Relacionado con NF-E2/genética , alfa-Sinucleína/genética , Ratones Transgénicos , Ubiquitinas
7.
Biomed Pharmacother ; 173: 116415, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479182

RESUMEN

Tetramethylpyrazine nitrone (TBN), a novel derivative of tetramethylpyrazine (TMP) designed and synthesized by our group, possesses multi-functional mechanisms of action and displays broad protective effects in vitro and in animal models of age-related brain disorders such as stroke, Alzheimer's disease (AD), Amyotrophic Lateral Sclerosis (ALS) and Parkinson's disease (PD). In the present report, we investigated the effects of TBN on aging, specifically on muscle aging and the associated decline of motor functions. Using a D-galactose-induced aging mouse model, we found that TBN could reverse the levels of several senescence and aging markers including p16, p21, ceramides, and telomere length and increase the wet-weight ratio of gastrocnemius muscle tissue, demonstrating its efficacy in ameliorating muscle aging. Additionally, the pharmacological effects of TBN on motor deficits (gait analysis, pole-climbing test and grip strength test), muscle fibrosis (hematoxylin & eosin (HE), Masson staining, and αSMA staining), inflammatory response (IL-1ß, IL-6, and TNF-α), and mitochondrial function (ATP, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were also confirmed in the D-galactose-induced aging models. Further experiments demonstrated that TBN alleviated muscle aging and improved the decline of age-related motor deficits through an AMPK-dependent mechanism. These findings highlight the significance of TBN as a potential anti-aging agent to combat the occurrence and development of aging and age-related diseases.


Asunto(s)
Galactosa , Fármacos Neuroprotectores , Pirazinas , Ratones , Animales , Proteínas Quinasas Activadas por AMP , Fármacos Neuroprotectores/farmacología , Envejecimiento , Transducción de Señal , Músculo Esquelético
8.
Mil Med Res ; 11(1): 16, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38462603

RESUMEN

BACKGROUND: Episodic memory loss is a prominent clinical manifestation of Alzheimer's disease (AD), which is closely related to tau pathology and hippocampal impairment. Due to the heterogeneity of brain neurons, the specific roles of different brain neurons in terms of their sensitivity to tau accumulation and their contribution to AD-like social memory loss remain unclear. Therefore, further investigation is necessary. METHODS: We investigated the effects of AD-like tau pathology by Tandem mass tag proteomic and phosphoproteomic analysis, social behavioural tests, hippocampal electrophysiology, immunofluorescence staining and in vivo optical fibre recording of GCaMP6f and iGABASnFR. Additionally, we utilized optogenetics and administered ursolic acid (UA) via oral gavage to examine the effects of these agents on social memory in mice. RESULTS: The results of proteomic and phosphoproteomic analyses revealed the characteristics of ventral hippocampal CA1 (vCA1) under both physiological conditions and AD-like tau pathology. As tau progressively accumulated, vCA1, especially its excitatory and parvalbumin (PV) neurons, were fully filled with mislocated and phosphorylated tau (p-Tau). This finding was not observed for dorsal hippocampal CA1 (dCA1). The overexpression of human tau (hTau) in excitatory and PV neurons mimicked AD-like tau accumulation, significantly inhibited neuronal excitability and suppressed distinct discrimination-associated firings of these neurons within vCA1. Photoactivating excitatory and PV neurons in vCA1 at specific rhythms and time windows efficiently ameliorated tau-impaired social memory. Notably, 1 month of UA administration efficiently decreased tau accumulation via autophagy in a transcription factor EB (TFEB)-dependent manner and restored the vCA1 microcircuit to ameliorate tau-impaired social memory. CONCLUSION: This study elucidated distinct protein and phosphoprotein networks between dCA1 and vCA1 and highlighted the susceptibility of the vCA1 microcircuit to AD-like tau accumulation. Notably, our novel findings regarding the efficacy of UA in reducing tau load and targeting the vCA1 microcircuit may provide a promising strategy for treating AD in the future.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Masculino , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Ratones Transgénicos , Proteómica , Hipocampo/metabolismo , Hipocampo/patología , Trastornos de la Memoria/metabolismo
9.
Exp Gerontol ; 187: 112375, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38320733

RESUMEN

Stress response is a fundamental mechanism for cell survival, providing protection under unfavorable conditions. Mitochondrial stress, in particular, can trigger mitophagy, a process that restores cellular health. Exhaustive exercise (EE) is a form of acute mitochondrial stress. The objective of this current study is to investigate the impact of EE on tau pathology in pR5 mice, as well as the potential underlying mechanisms. To evaluate this, we examined the levels of total and phosphorylated tau in the hippocampus of pR5 mice, both with and without EE treatment. Furthermore, the application of weighted correlation network analysis (WGCNA) was employed to identify protein modules associated with the phenotype following the proteomic experiment. The findings of our study demonstrated a significant decrease in tau phosphorylation levels upon EE treatment, in comparison to the pR5 group. Moreover, the proteomic analysis provided additional insights, revealing that the mitigation of tau pathology was primarily attributed to the modulation of various pathways, such as translation factors and oxidative phosphorylation. Additionally, the analysis of heatmaps revealed a significant impact of EE treatment on the translation process and electron transport chain in pR5 mice. Furthermore, biochemical analysis provided further confirmation that EE treatment effectively modulated the ATP level in pR5 mice. In conclusion, our study suggests that the observed decrease in tau phosphorylation resulting from EE treatment may primarily be attributed to its regulation of the translation process and enhancement of mitochondrial function.


Asunto(s)
Enfermedad de Alzheimer , Fenómenos Biológicos , Ratones , Animales , Ratones Transgénicos , Fosforilación , Proteínas tau/genética , Proteínas tau/metabolismo , Transporte de Electrón , Proteómica , Fosforilación Oxidativa , Procesamiento Proteico-Postraduccional , Enfermedad de Alzheimer/genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-37202891

RESUMEN

Sarcopenia is becoming prevalent in older or inactive patients, which is placing a heavy burden on the social health system. Studies on the pathogenesis of sarcopenia mainly focus on adipose tissue, myoglobin autophagy, and mitochondrial dysfunction. Up to now, non-drug treatment has been the main way to treat sarcopenia, and there are no drugs specially approved for the treatment of sarcopenia. Here, the pathophysiology and treatment methods of sarcopenia have been summarized, and new drugs for sarcopenia to be researched and developed in the future have been prospected.


Asunto(s)
Sarcopenia , Humanos , Anciano , Sarcopenia/tratamiento farmacológico , Envejecimiento/patología , Autofagia , Músculo Esquelético
11.
J Pharm Pharmacol ; 76(2): 154-161, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38104254

RESUMEN

OBJECTIVES: Arctigenin (ATG) is a natural product with a variety of biological activity, which can improve the pathological changes of Alzheimer's disease (AD) model mice through multiple mechanisms. This study aims to further elucidate the potential mechanism by which ATG improves memory impairment in AD mice. METHODS: Here, we used pR5 mice as an experimental model, and ATG was administered continuously for 90 days. Novel object recognition, Y-maze, and Morris water maze were used to evaluate the therapeutic effect of ATG on memory impairment in AD mice. Immunohistochemical and immunofluorescence analyses were used to evaluate the effects of ATG on tau hyperphosphorylation and neuroinflammation, respectively. Finally, proteomics techniques were used to explore the possible mechanism of ATG. KEY FINDINGS: ATG significantly improved memory impairment in pR5 mice and inhibited tau phosphorylation in the hippocampus and neuroinflammation in the cortex. According to the proteomic analysis, the altered cognitive function of ATG was associated with the proteins of the tricarboxylic acid cycle and the electron transport chain. CONCLUSION: These results suggest that ATG is a potential therapeutic agent for diseases related to aberrant energy metabolism that can treat AD by improving mitochondrial function.


Asunto(s)
Enfermedad de Alzheimer , Furanos , Lignanos , Memoria Espacial , Ratones , Animales , Memoria Espacial/fisiología , Proteínas tau/metabolismo , Enfermedades Neuroinflamatorias , Proteómica , Aprendizaje por Laberinto , Enfermedad de Alzheimer/metabolismo , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Hipocampo , Mitocondrias/metabolismo , Metabolismo Energético , Ratones Transgénicos , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/metabolismo
12.
J Adv Res ; 2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-37989471

RESUMEN

INTRODUCTION: Parkinson's disease (PD) is common neurodegenerative disease where oxidative stress and mitochondrial dysfunction play important roles in its progression. Tetramethylpyrazine nitrone (TBN), a potent free radical scavenger, has shown protective effects in various neurological conditions. However, the neuroprotective mechanisms of TBN in PD models remain unclear. OBJECTIVES: We aimed to investigate TBN's neuroprotective effects and mechanisms in PD models. METHODS: TBN's neuroprotection was initially measured in MPP+/MPTP-induced PD models. Subsequently, a luciferase reporter assay was used to detect peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) promoter activity. Effects of TBN on antioxidant damage and the PGC-1α/Nuclear factor erythroid-2-related factor 2 (Nrf2) pathway were thoroughly investigated. RESULTS: In MPP+-induced cell model, TBN (30-300 µM) increased cell survival by 9.95 % (P < 0.05), 16.63 % (P < 0.001), and 24.09 % (P < 0.001), respectively. TBN enhanced oxidative phosphorylation (P < 0.05) and restored PGC-1α transcriptional activity suppressed by MPP+ (84.30 % vs 59.03 %, P < 0.01). In MPTP-treated mice, TBN (30 mg/kg) ameliorated motor impairment, increased striatal dopamine levels (16.75 %, P < 0.001), dopaminergic neurons survival (27.12 %, P < 0.001), and tyrosine hydroxylase expression (28.07 %, P < 0.01). Selegiline, a positive control, increased dopamine levels (15.35 %, P < 0.001) and dopaminergic neurons survival (25.34 %, P < 0.001). Additionally, TBN reduced oxidative products and activated the PGC-1α/Nrf2 pathway. PGC-1α knockdown diminished TBN's neuroprotective effects, decreasing cell viability from 73.65 % to 56.87 % (P < 0.001). CONCLUSION: TBN has demonstrated consistent effectiveness in MPP+-induced midbrain neurons and MPTP-induced mice. Notably, the therapeutic effect of TBN in mitigating motor deficits and neurodegeneration is superior to selegiline. The neuroprotective mechanisms of TBN are associated with activation of the PGC-1α/Nrf2 pathway, thereby reducing oxidative stress and maintaining mitochondrial function. These findings suggest that TBN may be a promising therapeutic candidate for PD, warranting further development and investigation.

13.
Tob Induc Dis ; 21: 123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799805

RESUMEN

INTRODUCTION: This study comprehensively assessed the association between eight metabolites of urinary nicotine and cognitive impairment. METHODS: This cross-sectional study was based on the data of Shenzhen Aging Related Disorder Cohort (SADC), including 51 elderly community data variables such as demographic characteristics, neuropsychological assessment and environmental factors, from July 2017 to November 2018. Participant's cognitive function was assessed by Mini-Mental State Examination (MMSE) scale and urinary nicotine metabolite [including cotinine N-ß-D-glucuronide (CotGluc), rac 4-hydroxy-4-(3-pyridyl) butanoic acid dicyclohexylamine salt (HyPyBut), trans-3'-hydroxy cotinine O-ß-D-glucuronide (OHCotGluc), and cotinine (Cot), etc.] concentrations were measured by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). Generalized linear models and restricted cubic spline models were used to explore the relationships between the urinary levels of nicotine metabolite and cognitive function. RESULTS: A total of 296 individuals aged >60 years were included. Individuals in the third quartile of CotGluc had a 0.786 point (95% CI: -1.244 - -0.329) decrease or in the highest quartile of OHCotGluc had a 0.804 point (95% CI: -1.330 - -0.278) decreased in attention and calculation compared to those in the lowest quartile (all p for trend <0.05). Compared with those in the lowest quartile, individuals in the highest quartile of CotGluc, HyPyBut, OHCotGluc and Cot, respectively, corresponded to a 1.043 point (95% CI: -2.269-0.182), 1.101 points (95% CI: -2.391-0.188), 2.318 points (95% CI: -3.615 - -1.020), and 1.460 points (95% CI: -2.726 - -0.194) decreased in MMSE total score (all p for trend <0.05). A non-linear dose-response relationship between urinary levels of CotGluc, HyPyBut, OHCotGluc or Cot and cognitive function (all overall p<0.05, non-linear p<0.05). Subgroup analysis showed that urinary levels of CotGluc, OHCotGluc or Cot were significantly negatively associated with cognitive function (all p for trend <0.05) among females and non-smokers. CONCLUSIONS: The findings highlight the public health implications of environmental tobacco smoke exposure, and effective interventions need to be performed for vulnerable populations.

14.
Toxicol Lett ; 387: 14-27, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37717680

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder that mainly affects the elder population, and its etiology is enigmatic. Both environmental risks and genetics may influence the development of PD. Excess copper causes neurotoxicity and accelerates the progression of neurodegenerative diseases. However, the underlying mechanisms of copper-induced neurotoxicity remain controversial. In this study, A53T transgenic α-synuclein (A53T) mice and their matching wild-type (WT) mice were treated with a low dose of copper (0.13 ppm copper chlorinated drinking water, equivalent to the copper exposure of human daily copper intake dose) for 4 months, and copper poisoning was performed on human A53T mutant SHSY5Y cells overexpressed with α-synuclein (dose of 1/4 IC50), to test the effects of copper exposure on the body. The results of the open field test showed that the moto function of Cu-treated mice was impaired. Proteomics revealed changes in neurodevelopment, transport function, and mitochondrial membrane-related function in Cu-treated WT mice, which were associated with reduced expression of mitochondrial complex (NDUFA10, ATP5A), dopamine neurons (TH), and dopamine transporter (DAT). Mitochondrial function, nervous system development, synaptic function, and immune response were altered in Cu-treated A53T mice. These changes were associated with increased mitochondrial splitting protein (Drp1), decreased mitochondrial fusion protein (OPA1, Mfn1), abnormalities in mitochondrial autophagy protein (LC3BII/I, P62), decreased dopamine neuron (TH) expression, increased α-synuclein expression, inflammatory factors (IL-6, IL-1ß, and TNF-α) release and microglia (Iba1) activation. In addition, we found that Cu2+ (30 µM) induced excessive ROS production and reduced mitochondrial ATP production in human A53T mutant α-synuclein overexpressing SHSY5Y cells by in vitro experiments. In conclusion, low-dose copper treatment altered critical proteins involved in mitochondrial, neurodevelopmental, and inflammatory responses and affected mitochondria's ROS and ATP production levels.


Asunto(s)
Cobre , Enfermedad de Parkinson , alfa-Sinucleína , Animales , Ratones , Adenosina Trifosfato/metabolismo , alfa-Sinucleína/metabolismo , Cobre/toxicidad , Cobre/metabolismo , Ratones Transgénicos , Mitocondrias/metabolismo , Enfermedad de Parkinson/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Modelos Animales de Enfermedad , Línea Celular , Humanos
15.
MedComm (2020) ; 4(4): e315, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37533767

RESUMEN

Multi-omics usually refers to the crossover application of multiple high-throughput screening technologies represented by genomics, transcriptomics, single-cell transcriptomics, proteomics and metabolomics, spatial transcriptomics, and so on, which play a great role in promoting the study of human diseases. Most of the current reviews focus on describing the development of multi-omics technologies, data integration, and application to a particular disease; however, few of them provide a comprehensive and systematic introduction of multi-omics. This review outlines the existing technical categories of multi-omics, cautions for experimental design, focuses on the integrated analysis methods of multi-omics, especially the approach of machine learning and deep learning in multi-omics data integration and the corresponding tools, and the application of multi-omics in medical researches (e.g., cancer, neurodegenerative diseases, aging, and drug target discovery) as well as the corresponding open-source analysis tools and databases, and finally, discusses the challenges and future directions of multi-omics integration and application in precision medicine. With the development of high-throughput technologies and data integration algorithms, as important directions of multi-omics for future disease research, single-cell multi-omics and spatial multi-omics also provided a detailed introduction. This review will provide important guidance for researchers, especially who are just entering into multi-omics medical research.

16.
J Pharm Pharmacol ; 75(8): 1086-1099, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37167529

RESUMEN

OBJECTIVES: We aimed to elucidate the therapeutic potential of Chrysin (CN) against the high-fat diet (HFD) induced non-alcoholic fatty liver disease (NAFLD) and its mechanism. METHODS: To assess the hypothesis, NAFLD was induced in C57BL/6 mice by feeding a high-fat diet for up to two months, followed by CN administration (for three months). Liver injury/toxicity, lipid deposition, inflammation and fibrosis were detected via molecular and biochemical analysis, including blood chemistry, immunoimaging and immunoblotting. Moreover, we performed proteomic analysis to illuminate Chrysin's therapeutic effects further. KEY FINDINGS: CN treatment significantly reduced liver-fat accumulation and inflammation, ultimately improving obesity and liver injury in NAFLD mice. Proteomic analysis showed that CN modified the protein expression profiles in the liver, particularly improving the expression of proteins related to energy, metabolism and inflammation. Mechanistically, CN treatment increased AMP-activated protein and phosphorylated CoA (P-ACC). Concurrently, it reduced inflammation and inflammation activation by inhibiting NLRP3 expression. CONCLUSIONS: In summary, CN treatment reduced lipid metabolism by AMPK and inflammasome activation by NLRP3 inhibition, ultimately improving NAFLD progression. These findings suggest that CN could be a potential treatment candidate for the NFLAD condition.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Proteínas Quinasas Activadas por AMP/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteómica , Ratones Endogámicos C57BL , Hígado , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Metabolismo de los Lípidos , Dieta Alta en Grasa/efectos adversos
17.
MedComm (2020) ; 4(3): e252, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37139463

RESUMEN

Sleep insufficiency is associated with various disorders; the molecular basis is unknown until now. Here, 14 males and 18 females were subjected to short-term (24 h) sleep deprivation, and donated fasting blood samples prior to (day 1) and following (days 2 and 3) short-term sleep deprivation. We used multiple omics techniques to examine changes in volunteers' blood samples that were subjected to integrated, biochemical, transcriptomic, proteomic, and metabolomic analyses. Sleep deprivation caused marked molecular changes (46.4% transcript genes, 59.3% proteins, and 55.6% metabolites) that incompletely reversed by day 3. The immune system in particular neutrophil-mediated processes associated with plasma superoxidase dismutase-1 and S100A8 gene expression was markedly affected. Sleep deprivation decreased melatonin levels and increased immune cells, inflammatory factors and c-reactive protein. By disease enrichment analysis, sleep deprivation induced signaling pathways for schizophrenia and neurodegenerative diseases enriched. In sum, this is the first multiomics approach to show that sleep deprivation causes prominent immune changes in humans, and clearly identified potential immune biomarkers associated with sleep deprivation. This study indicated that the blood profile following sleep disruption, such as may occur among shift workers, may induce immune and central nervous system dysfunction.

18.
Immun Ageing ; 20(1): 15, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37005686

RESUMEN

BACKGROUND: A wide spectrum of changes occurs in the brain with age, from molecular to morphological aspects, and inflammation accompanied by mitochondria dysfunction is one of the significant factors associated with age. Adiponectin (APN), an essential adipokine in glucose and lipid metabolism, is involved in the aging; however, its role in brain aging has not been adequately explored. Here, we aimed to explore the relationship between APN deficiency and brain aging using multiple biochemical and pharmacological methods to probe APN in humans, KO mice, primary microglia, and BV2 cells. RESULTS: We found that declining APN levels in aged human subjects correlated with dysregulated cytokine levels, while APN KO mice exhibited accelerated aging accompanied by learning and memory deficits, anxiety-like behaviors, neuroinflammation, and immunosenescence. APN-deficient mice displayed aggravated mitochondrial dysfunction and HDAC1 upregulation. In BV2 cells, the APN receptor agonist AdipoRon alleviated the mitochondrial deficits and aging markers induced by rotenone or antimycin A. HDAC1 antagonism by Compound 60 (Cpd 60) improved mitochondrial dysfunction and age-related inflammation, as validated in D-galactose-treated APN KO mice. CONCLUSION: These findings indicate that APN is a critical regulator of brain aging by preventing neuroinflammation associated with mitochondrial impairment via HDAC1 signaling.

19.
Neurobiol Stress ; 24: 100537, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37081927

RESUMEN

After aversive stress, people either choose to return to their previously familiar social environment or tend to adopt temporary social withdrawal to buffer negative emotions. However, which behavior intervention is more appropriate and when remain elusive. Here, we unexpectedly found that stressed mice experiencing social isolation exhibited less anxiety than those experiencing social contact. Within the first 24 h after returning to their previous social environment, mice experienced acute restraint stress (ARS) displayed low social interest but simultaneously received excessive social disturbance from their cage mates, indicating a critical time window for social isolation to balance the conflict. To screen brain regions that were differentially activated between the poststress social isolation and poststress social contact groups, we performed ΔFosB immunostaining and found that ΔFosB + signals were remarkably increased in the vDG of poststress social isolation group compared with poststress social contact group. There were no significant differences between the two groups in the other anxiety- and social-related brain regions, such as prelimbic cortex, infralimbic cortex, nucleus accumbens, etc. These data indicate that vDG is closely related to the differential phenotypes between the poststress social isolation and poststress social contact groups. Electrophysiological recording, further, revealed a higher activity of vDG in the poststress social isolation group than the poststress social contact group. Chemogenetically inhibiting vDG excitatory neurons within the first 24 h after ARS completely abolished the anxiolytic effects of poststress social isolation, while stimulating vDG excitatory neurons remarkably reduced anxiety-like behaviors in the poststress social contact group. Together, these data suggest that the activity of vDG excitatory neurons is essential and sufficient to govern the anxiolytic effect of poststress social isolation. To the best of our knowledge, this is the first report to uncover a beneficial role of temporal social isolation in acute stress-induced anxiety. In addition to the critical 24-h time window, activation of vDG is crucial for ameliorating anxiety through poststress social isolation.

20.
Toxicol Lett ; 380: 40-52, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37028497

RESUMEN

1,2-Dichloroethane (1,2-DCE) is a pervasive environmental pollutant found in ambient and residential air, as well as ground and drinking water. Brain edema is the primary pathological consequence of 1,2-DCE overexposure. We found that microRNA (miRNA)-29b dysregulation after 1,2-DCE exposure can aggravate brain edema by suppressing aquaporin 4 (AQP4). Moreover, circular RNAs (circRNAs) can regulate the expression of downstream target genes through miRNA, and affect protein function. However, circRNAs' role in 1,2-DCE-induced brain edema via miR-29b-3p/AQP4 axis remains unclear. To address the mechanism's bottleneck, we explored the circRNA-miRNA-mRNA network underlying 1,2-DCE-driven astrocyte swelling in SVG p12 cells by circRNA sequencing, electron microscopy and isotope 3H labeling combined with the 3-O-methylglucose uptake method. The results showed that 25 and 50 mM 1,2-DCE motivated astrocyte swelling, characterized by increased water content, enlarged cell vacuoles, and mitochondrial swelling. This was accompanied by miR-29b-3p downregulation and AQP4 upregulation. We verified that AQP4 were negatively regulated by miR-29b-3p in 1,2-DCE-induced astrocyte swelling. Also, circRNA sequencing highlighted that circBCL11B was upregulated by 1,2-DCE. This was manifested as circBCL11B overexpression playing an endogenous competitive role via upregulating AQP4 by binding to miR-29b-3p, thus leading to astrocyte swelling. Conversely, circBCL11B knockdown reversed the 1,2-DCE-motivated AQP4 upregulation and alleviated the cell swelling. Finally, we demonstrated that the circBCL11B was targeted to miR-29b-3p by fluorescence in situ hybridization and dual-luciferase reporter assay. In conclusion, our findings indicate that circBCL11B acts as a competing endogenous RNA to facilitate 1,2-DCE-caused astrocyte swelling via miR-29b-3p/AQP4 axis. These observations provide new insight into the epigenetic mechanisms underlying 1,2-DCE-induced brain edema.


Asunto(s)
Edema Encefálico , MicroARNs , Humanos , ARN Circular/genética , Edema Encefálico/inducido químicamente , Edema Encefálico/genética , Edema Encefálico/patología , Astrocitos/metabolismo , Acuaporina 4/genética , Hibridación Fluorescente in Situ , MicroARNs/genética , MicroARNs/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA