Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 535
Filtrar
1.
J Immunol ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856585

RESUMEN

Recruitment of immune cells to the injury site plays a pivotal role in the pathology of radiation-associated diseases. In this study, we investigated the impact of the chemokine CCL22 released from alveolar type II epithelial (AT2) cells after irradiation on the recruitment and functional changes of dendritic cells (DCs) in the development of radiation-induced lung injury (RILI). By examining changes in CCL22 protein levels in lung tissue of C57BL/6N mice with RILI, we discovered that ionizing radiation increased CCL22 expression in irradiated alveolar AT2 cells, as did MLE-12 cells after irradiation. A transwell migration assay revealed that CCL22 promoted the migration of CCR4-positive DCs to the injury site, which explained the migration of pulmonary CCR4-positive DCs in RILI mice in vivo. Coculture experiments demonstrated that, consistent with the response of regulatory T cells in the lung tissue of RILI mice, exogenous CCL22-induced DCs promoted regulatory T cell proliferation. Mechanistically, we demonstrated that Dectin2 and Nr4a2 are key targets in the CCL22 signaling pathway, which was confirmed in pulmonary DCs of RILI mice. As a result, CCL22 upregulated the expression of PD-L1, IL-6, and IL-10 in DCs. Consequently, we identified a mechanism in which CCL22 induced DC tolerance through the CCR4-Dectin2-PLC-γ2-NFATC2-Nr4a2-PD-L1 pathway. Collectively, these findings demonstrated that ionizing radiation stimulates the expression of CCL22 in AT2 cells to recruit DCs to the injury site and further polarizes them into a tolerant subgroup of CCL22 DCs to regulate lung immunity, ultimately providing potential therapeutic targets for DC-mediated RILI.

2.
Chem Commun (Camb) ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836308

RESUMEN

The first chloroaluminoborate, CsAlB3O6Cl, with innovative AlO3Cl tetrahedra and a perfect planar arrangement of [B3O6] groups, was structurally designed and synthesized via chlorination of [AlO4] tetrahedra. Simultaneously, the smooth introduction of the [AlO3Cl] group into borates initiates the development of a chloroaluminoborate and greatly enriches the structural chemistry of aluminoborates.

3.
Front Cardiovasc Med ; 11: 1280734, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38836066

RESUMEN

Coronary microvascular disease (CMVD) is common in patients with cardiovascular risk factors and is linked to an elevated risk of adverse cardiovascular events. Although modern medicine has made significant strides in researching CMVD, we still lack a comprehensive understanding of its pathophysiological mechanisms due to its complex and somewhat cryptic etiology. This greatly impedes the clinical diagnosis and treatment of CMVD. The primary pathological mechanisms of CMVD are structural abnormalities and/or dysfunction of coronary microvascular endothelial cells. The development of CMVD may also involve a variety of inflammatory factors through the endothelial cell injury pathway. This paper first reviews the correlation between the inflammatory response and CMVD, then summarizes the possible mechanisms of inflammatory response in CMVD, and finally categorizes the drugs used to treat CMVD based on their effect on the inflammatory response. We hope that this paper draws attention to CMVD and provides novel ideas for potential therapeutic strategies based on the inflammatory response.

4.
Biomed Eng Online ; 23(1): 53, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858706

RESUMEN

BACKGROUND: Metastasis is one of the main factors leading to the high mortality rate of gastric cancer. The current monitoring methods are not able to accurately monitor gastric cancer metastasis. METHODS: In this paper, we constructed a new type of hollow Mn 3 O 4 nanocomposites, Mn 3 O 4 @HMSN-Cy7.5-FA, which had a size distribution of approximately 100 nm and showed good stability in different liquid environments. The in vitro magnetic resonance imaging (MRI) results show that the nanocomposite has good response effects to the acidic microenvironment of tumors. The acidic environment can significantly enhance the contrast of T 1 -weighted MRI. The cellular uptake and endocytosis results show that the nanocomposite has good targeting capabilities and exhibits good biosafety, both in vivo and in vitro. In a gastric cancer nude mouse orthotopic metastatic tumor model, with bioluminescence imaging's tumor location information, we realized in vivo MRI/fluorescence imaging (FLI) guided precise monitoring of the gastric cancer orthotopic and metastatic tumors with this nanocomposite. RESULTS: This report demonstrates that Mn 3 O 4 @HMSN-Cy7.5-FA nanocomposites is a promising nano-diagnostic platform for the precision diagnosis and therapy of gastric cancer metastasis in the future. CONCLUSIONS: In vivo MRI/FLI imaging results show that the nanocomposites can achieve accurate monitoring of gastric cancer tumors in situ and metastases. BLI's tumor location information further supports the good accuracy of MRI/FLI dual-modality imaging. The above results show that the MHCF NPs can serve as a good nano-diagnostic platform for precise in vivo monitoring of tumor metastasis. This nanocomposite provides more possibilities for the diagnosis and therapy of gastric cancer metastases.


Asunto(s)
Ácido Fólico , Imagen por Resonancia Magnética , Nanocompuestos , Metástasis de la Neoplasia , Neoplasias Gástricas , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/patología , Animales , Nanocompuestos/química , Ratones , Línea Celular Tumoral , Humanos , Ácido Fólico/química , Compuestos de Manganeso/química , Imagen Óptica , Ratones Desnudos , Óxidos
5.
Biomed Pharmacother ; 176: 116761, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788596

RESUMEN

The discovery of regulatory cell death processes has driven innovation in cardiovascular disease (CVD) therapeutic strategies. Over the past decade, ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, has been shown to drive the development of multiple CVDs. This review provides insights into the evolution of the concept of ferroptosis, the similarities and differences with traditional modes of programmed cell death (e.g., apoptosis, autophagy, and necrosis), as well as the core regulatory mechanisms of ferroptosis (including cystine/glutamate transporter blockade, imbalance of iron metabolism, and lipid peroxidation). In addition, it provides not only a detailed review of the role of ferroptosis and its therapeutic potential in widely studied CVDs such as coronary atherosclerotic heart disease, myocardial infarction, myocardial ischemia/reperfusion injury, heart failure, cardiomyopathy, and aortic aneurysm but also an overview of the phenomenon and therapeutic perspectives of ferroptosis in lesser-addressed CVDs such as cardiac valvulopathy, pulmonary hypertension, and sickle cell disease. This article aims to integrate this knowledge to provide a comprehensive view of ferroptosis in a wide range of CVDs and to drive innovation and progress in therapeutic strategies in this field.


Asunto(s)
Enfermedades Cardiovasculares , Ferroptosis , Ferroptosis/fisiología , Humanos , Animales , Enfermedades Cardiovasculares/metabolismo , Peroxidación de Lípido , Hierro/metabolismo
6.
Front Cardiovasc Med ; 11: 1369642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716483

RESUMEN

Refractory heart failure (RHF), or end-stage heart failure, has a poor prognosis and high case fatality rate, making it one of the therapeutic difficulties in the cardiovascular field. Despite the continuous abundance of methods and means for treating RHF in modern medicine, it still cannot meet the clinical needs of patients with RHF. How to further reduce the mortality rate and readmission rate of patients with RHF and improve their quality of life is still a difficult point in current research. In China, traditional Chinese medicine (TCM) has been widely used and has accumulated rich experience in the treatment of RHF due to its unique efficacy and safety advantages. Based on this, we comprehensively summarized and analyzed the clinical evidence and mechanism of action of TCM in the treatment of RHF and proposed urgent scientific issues and future research strategies for the treatment of RHF with TCM, to provide reference for the treatment of RHF.

7.
Chem Sci ; 15(17): 6577-6582, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38699258

RESUMEN

Infrared (IR) nonlinear optical (NLO) materials with strong NLO response, wide band gap and high laser-induced damage threshold (LIDT) are highly expected in current laser technologies. Herein, by introducing double alkaline-earth metal (AEM) atoms, three wide band gap selenide IR NLO materials AIIMg6Ga6Se16 (AII = Ca, Sr, Ba) with excellent linear and NLO optical properties have been rationally designed and fabricated. AIIMg6Ga6Se16 (AII = Ca, Sr, Ba) are composed of unique [AIISe6] triangular prisms, [MgSe6] octahedra and [GaSe4] tetrahedra. The introduction of double AEMs effectively broadens the band gaps of selenide-based IR NLO materials. Among them, CaMg6Ga6Se16, achieving the best balance between the second-harmonic generation response (∼1.5 × AgGaS2), wide band gap (2.71 eV), high LIDT (∼9 × AgGaS2), and moderate birefringence of 0.052 @ 1064 nm, is a promising NLO candidate for high power IR laser. Theoretical calculations indicate that the NLO responses and band gaps among the three compounds are mainly determined by the NLO-active [GaSe4] units. The results enrich the chemical diversity of chalcogenides, and give some insight into the design of new functional materials based on the rare [AIISe6] prismatic units.

8.
Transl Oncol ; 45: 101973, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705052

RESUMEN

OBJECTIVE: High-grade glioma (HGG) patients frequently encounter treatment resistance and relapse, despite numerous interventions seeking enhanced survival outcomes yielding limited success. Consequently, this study, rooted in our prior research, aimed to ascertain whether leveraging circadian rhythm phase attributes could optimize radiotherapy results. METHODS: In this retrospective analysis, we meticulously selected 121 HGG cases with synchronized rhythms through Cosinor analysis. Post-surgery, all subjects underwent standard radiotherapy alongside Temozolomide chemotherapy. Random allocation ensued, dividing patients into morning (N = 69) and afternoon (N = 52) radiotherapy cohorts, enabling a comparison of survival and toxicity disparities. RESULTS: The afternoon radiotherapy group exhibited improved overall survival (OS) and progression-free survival (PFS) relative to the morning cohort. Notably, median OS extended to 25.6 months versus 18.5 months, with P = 0.014, with median PFS at 20.6 months versus 13.3 months, with P = 0.022, post-standardized radiotherapy. Additionally, lymphocyte expression levels in the afternoon radiation group 32.90(26.10, 39.10) significantly exceeded those in the morning group 31.30(26.50, 39.20), with P = 0.032. CONCLUSIONS: This study underscores the markedly prolonged average survival within the afternoon radiotherapy group. Moreover, lymphocyte proportion demonstrated a notable elevation in the afternoon group. Timely and strategic adjustments of therapeutic interventions show the potential to improve therapeutic efficacy, while maintaining vigilant systemic immune surveillance. A comprehensive grasp of physiological rhythms governing both the human body and tumor microenvironment can refine treatment efficacy, concurrently curtailing immune-related damage-a crucial facet of precision medicine.

9.
J Ethnopharmacol ; 330: 118264, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38692417

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Optimized New Shengmai Powder (ONSMP) is a sophisticated traditional Chinese medicinal formula renowned for bolstering vital energy, optimizing blood circulation, and mitigating fluid retention. After years of clinical application, ONSMP has shown a significant impact in improving myocardial injury and cardiac function and has a positive effect on treating heart failure. However, many unknowns exist about the molecular biological mechanisms of how ONSMP exerts its therapeutic effects, which require further research and exploration. AIM OF THE STUDY: Exploring the potential molecular biological mechanisms by which ONSMP ameliorates cardiomyocyte apoptosis and ferroptosis in ischemic heart failure (IHF). MATERIALS AND METHODS: First, we constructed a rat model of IHF by inducing acute myocardial infarction through surgery and using echocardiography, organ coefficients, markers of heart failure, antioxidant markers, and histopathological examination to assess the effects of ONSMP on cardiomyocyte apoptosis and ferroptosis in IHF rats. Next, we used bioinformatics analysis techniques to analyze the active components, signaling pathways, and core targets of ONSMP and calculated the interactions between core targets and corresponding elements. Finally, we detected the positive expression of apoptosis and ferroptosis markers and core indicators of signaling pathways by immunohistochemistry; detected the mean fluorescence intensity of core indicators of signaling pathways by immunofluorescence; detected the protein expression of signaling pathways and downstream effector molecules by western blotting; and detected the mRNA levels of p53 and downstream effector molecules by quantitative polymerase chain reaction. RESULTS: ONSMP can activate the Ser83 site of ASK by promoting the phosphorylation of the PI3K/AKT axis, thereby inhibiting the MKK3/6-p38 axis and the MKK4/7-JNK axis signaling to reduce p53 expression, and can also directly target and inhibit the activity of p53, ultimately inhibiting p53-mediated mRNA and protein increases in PUMA, SAT1, PIG3, and TFR1, as well as mRNA and protein decreases in SLC7A11, thereby inhibiting cardiomyocyte apoptosis and ferroptosis, effectively improving cardiac function and ventricular remodeling in IHF rat models. CONCLUSION: ONSMP can inhibit cardiomyocyte apoptosis and ferroptosis through the PI3K/AKT/p53 signaling pathway, delaying the development of IHF.


Asunto(s)
Apoptosis , Combinación de Medicamentos , Medicamentos Herbarios Chinos , Ferroptosis , Insuficiencia Cardíaca , Miocitos Cardíacos , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Transducción de Señal , Proteína p53 Supresora de Tumor , Animales , Ferroptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Apoptosis/efectos de los fármacos , Masculino , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Ratas , Fosfatidilinositol 3-Quinasa/metabolismo , Isquemia Miocárdica/tratamiento farmacológico , Modelos Animales de Enfermedad , Polvos
10.
Chemistry ; 30(33): e202400656, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38616497

RESUMEN

Assembling multi-anionic groups is conducive to utilizing respective advantage to achieve the enhancement of optical performance. Two new hydroxyfluorooxoborates, Ama2-Rb2B3O3F4(OH) and K8Cs2B15O14(OH)7F20 ⋅ H2O with [B3O3F4(OH)] six-membered rings were synthesized for the first time. The title compounds exhibit short ultraviolet cutoff edges (<200 nm) and K8Cs2B15O14(OH)7F20 ⋅ H2O possesses a moderate experimental refractive index difference of 0.051@546 nm.

11.
Animals (Basel) ; 14(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612245

RESUMEN

Chronic heat stress can have detrimental effects on the survival of fish. This study aimed to investigate the impact of prolonged high temperatures on the growth, antioxidant capacity, apoptosis, and transcriptome analysis of Hong Kong catfish (Clarias fuscus). By analyzing the morphological statistics of C. fuscus subjected to chronic high-temperature stress for 30, 60, and 90 days, it was observed that the growth of C. fuscus was inhibited compared to the control group. The experimental group showed a significant decrease in body weight and body length compared to the control group after 60 and 90 days of high-temperature stress (p < 0.05, p < 0.01). A biochemical analysis revealed significant alterations in the activities of three antioxidant enzymes superoxide dismutase activity (SOD); catalase activity (CAT); glutathione peroxidase activity (GPx), the malondialdehyde content (MDA), and the concentrations of serum alkaline phosphatase (ALP); Aspartate aminotransferase (AST); and alanine transaminase (ALT) in the liver. TUNEL staining indicated stronger apoptotic signals in the high-temperature-stress group compared to the control group, suggesting that chronic high-temperature-induced oxidative stress, leading to liver tissue injury and apoptosis. Transcriptome analysis identified a total of 1330 DEGs, with 835 genes being upregulated and 495 genes being downregulated compared to the control group. These genes may be associated with oxidative stress, apoptosis, and immune response. The findings elucidate the growth changes in C. fuscus under chronic high temperature and provide insights into the underlying response mechanisms to a high-temperature environment.

12.
Foods ; 13(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38472761

RESUMEN

This study employed the headspace-gas chromatography-ion migration spectrum (HS-GC-IMS) in conjunction with the gas chromatography-mass spectrometer (GC-MS) technique for the assessment of the flavor quality of complementary food powder intended for infants and young children. A total of 62 volatile compounds were identified, including aldehydes, esters, alcohols, ketones, pyrazines, and furans, among which aldehydes were the most abundant compounds. Based on the principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) models, infant nutritional powder (YYB) from different manufacturers could be clearly distinguished. Among them, 2-hydroxybenzaldehyde, 1, 2-dimethoxyethane, 2-isobutyl-3-methoxypyrazine, and methyl butyrate were the four most critical differential volatiles. In addition, these differences were also manifested in changes in fatty acids. The reason for this phenomenon can be attributed to the difference in the proportion of raw materials used in nutrition powder, micronutrient content, and the packaging process. In conclusion, this study provides comprehensive information on the flavor quality of YYB, which can be used as a basis for quality control of YYB.

13.
J Colloid Interface Sci ; 664: 801-808, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492381

RESUMEN

Ecofriendly fabrication of anti-oil-fouling materials is of interest. Surfaces with underwater superoleophobicity have been fabricated which exhibit limited mechanical durability and water resistance. In this study, we report on a bioinspired bilayer design of a transparent anti-oil-fouling coating. Seaweed surfaces show anti-oil-fouling in the sea due to its high surface hydration ability. Mussels can adhere tightly onto a surface with good stability in the sea by virtue of its levodopa-containing secretions. The surface layer was fabricated using a crosslinked combination of carboxymethyl cellulose (CMC) and sodium alginate (AlgS) inspired by seaweed, with the addition of calcium ions. Polydopamine (PDA), a derivative of levodopa, was used as the underlayer to enhance bonding strength and water resistance. Oil that adhered to the coated surface was spontaneously detached upon immersion in water. The mechanism underlying this anti-oil-fouling effect was elucidated using Gibbs free energy theory. The coating exhibited mechanical durability and water resistance. The coating is transparent and preserves the original color of the substrate. The coated glass showed stable anti-fogging and anti-frost performance. These coatings hold promise for a wide range of anti-oil-fouling applications.

14.
Biomed Pharmacother ; 173: 116413, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461687

RESUMEN

Myocardial fibrosis is a significant pathological basis of heart failure. Overactivation of the ERK1/2 and JNK1/2 signaling pathways of MAPK family members synergistically promotes the proliferation of myocardial fibroblasts and accelerates the development of myocardial fibrosis. In addition to some small molecule inhibitors and Western drugs, many Chinese medicines can also inhibit the activity of ERK1/2 and JNK1/2, thus slowing down the development of myocardial fibrosis, and are generally safe and effective. However, the specific biological mechanisms of ERK1/2 and JNK1/2 signaling pathways in myocardial fibrosis still need to be fully understood, and there is no systematic review of existing drugs and methods to inhibit them from improving myocardial fibrosis. This study aims to summarize the roles and cross-linking mechanisms of ERK1/2 and JNK1/2 signaling pathways in myocardial fibrosis and to systematically sort out the small-molecule inhibitors, Western drugs, traditional Chinese medicines, and non-pharmacological therapies that inhibit ERK1/2 and JNK1/2 to alleviate myocardial fibrosis. In the future, we hope to conduct more in-depth research from the perspective of precision-targeted therapy, using this as a basis for developing new drugs that provide new perspectives on the prevention and treatment of heart failure.


Asunto(s)
Insuficiencia Cardíaca , Sistema de Señalización de MAP Quinasas , Humanos , Transducción de Señal , Insuficiencia Cardíaca/tratamiento farmacológico , Miocardio , Fibrosis
15.
Quant Imaging Med Surg ; 14(3): 2225-2239, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38545061

RESUMEN

Background: An accurate assessment of isocitrate dehydrogenase (IDH) status in patients with glioma is crucial for treatment planning and is a key factor in predicting patient outcomes. In this study, we investigated the potential value of whole-tumor histogram metrics derived from synthetic magnetic resonance imaging (MRI) in distinguishing IDH mutation status between astrocytoma and glioblastoma. Methods: In this prospective study, 80 glioma patients were enrolled from September 2019 to June 2022. All patients underwent pre- and post-contrast synthetic MRI scan protocol. Immunohistochemistry (IHC) staining or gene sequencing were used to assess IDH mutation status in tumor tissue samples. Whole-tumor histogram metrics, including T1, T2, proton density (PD), etc., were extracted from the quantitative maps, while radiological features were assessed by synthetic contrast-weighted maps. Basic clinical features of the patients were also evaluated. Differences in clinical, radiological, and histogram metrics between IDH-mutant astrocytoma and IDH-wildtype glioblastoma were analyzed using univariate analyses. Variables with statistical significance in univariate analysis were included in multivariate logistic regression analysis to develop the combined model. Receiver operating characteristic (ROC) and area under the curve (AUC) were used to assess the diagnostic performance of metrics and models. Results: The histopathologic analysis revealed that of the 80 cases, 41 were classified as IDH-mutant astrocytoma and 39 as IDH-wildtype glioblastoma. Compared to IDH-wildtype glioblastoma, IDH-mutant astrocytoma showed significantly lower T1 [10th percentile (10th), mean, and median] and post-contrast PD (10th, 90th percentile, mean, median, and maximum) values as well as higher post-contrast T1 (cT1) (10th, mean, median, and minimum) values (all P<0.05). The combined model (T1-10th + cT1-10th + age) was developed by integrating the independent influencing factors of IDH-mutant astrocytoma using the multivariate logistic regression. The diagnostic performance of this model [AUC =0.872 (0.778-0.936), sensitivity =75.61%, and specificity =89.74%] was superior to the clinicoradiological model, which was constructed using age and enhancement degree (AUC =0.822 (0.870-0.898), P=0.035). Conclusions: The combined model constructed using histogram metrics derived from synthetic MRI could be a valuable preoperative tool to distinguish IDH mutation status between astrocytoma and glioblastoma, and subsequently, could assist in the decision-making process of pretreatment.

17.
Inorg Chem ; 63(10): 4783-4789, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38412503

RESUMEN

A mild hydrothermal method was employed to successfully synthesize two new sulfate fluorides, namely, AYSO4F2 (A = K, Rb). They are isomorphic, and both contain [YO4F4] polyhedra and [SO4] tetrahedra in the structure. Theoretical calculations and experimental tests show that AYSO4F2 (A = K, Rb) have large band gaps (7.79 and 7.82 eV) and moderate birefringence (0.015 and 0.02 @ 546.1 nm), with significantly enhanced birefringence and band gaps as compared to that of the single alkali metal sulfates A2SO4 (A = K, Rb). Furthermore, theoretical calculations show that [YO4F4] polyhedra are the main reason for the band gap and birefringence enhancement. This work contributes to the advancement of structural chemistry in the field of rare-earth sulfates, offering a novel approach for the design of sulfates characterized by large birefringence.

18.
Chem Commun (Camb) ; 60(19): 2653-2656, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38348788

RESUMEN

Fluorooxoborates constitute a rich source of optical crystals due to their structural diversity and excellent performance. Antimony fluorooxoborates with stereochemically active lone pairs of electrons still have not been found, although the first antimony borate was discovered several years ago. In this study, we have achieved the successful synthesis of the first antimony(III) fluorooxoborate with an unprecedented [B2O4F]∞ chain, namely SbB2O4F. Remarkably, SbB2O4F shows strong birefringence (0.171@1064 nm) and short UV cutoff edges (about 220 nm) according to calculations. The birefringence of SbB2O4F mainly originates from the highly distorted [SbO4] groups.

19.
Small ; 20(16): e2308806, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38010127

RESUMEN

Developing high-performance infrared (IR) nonlinear optical (NLO) materials is urgent but challenging due to the competition between NLO coefficient and bandgap in one compound. Herein, by coupling NLO-active [BS3] planar units and halide-centered polycations, six new metal thioborate halides ABa3B2S6X (A = Rb, Cs; X = Cl, Br, I) composed of zero-dimensional [XBamRbn/Csn] polycations and [BS3] units, belonging to a new A I B 3 II C 2 III Q 6 VI X VII ${\mathrm{A}}^{\mathrm{I}}{\mathrm{B}}_{3}^{\mathrm{II}}{\mathrm{C}}_{2}^{\mathrm{III}}{\mathrm{Q}}_{6}^{\mathrm{VI}}{\mathrm{X}}^{\mathrm{VII}}$ family, are rationally designed and fabricated. The compounds show an interesting structural transition from Pbcn (ABa3B2S6Cl) to Cmc21 (ABa3B2S6Br and ABa3B2S6I) driven by the clamping effect of polycationic frameworks. ABa3B2S6Br and ABa3B2S6I are the first series metal thioborate halide IR NLO materials, and the introduction of [BS3] unit effectively widens the bandgap of planar unit-constructed chalcogenides. ABa3B2S6Br and ABa3B2S6I, exhibiting wide bandgaps (3.55-3.60 eV), high laser-induced damage thresholds (≈ 6 × AgGaS2), and strong SHG effects (0.5-0.6 × AgGaS2) with phase-matching behaviors, are the promising IR NLO candidates for high-power laser applications. The results enrich the chemical and structural diversity of boron chemistry and give some insights into the design of new IR NLO materials with planar units.

20.
Chem Commun (Camb) ; 60(3): 340-343, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38078370

RESUMEN

Herein, the first lead tellurium borate, PbTeB4O9, with an unprecedented fundamental building block [B4O10] was successfully synthesized. The near-parallel alignment of [B4O10] groups and [TeO3] polyhedra resulted in a high birefringence (0.099@1064 nm). The structure-property relationship was discussed by using the first-principles calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA