Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nat Commun ; 15(1): 6294, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060273

RESUMEN

Aluminum (Al) toxicity is one of the major constraints for crop production in acid soils, Al-ACTIVATED MALATE TRANSPORTER1 (ALMT1)-dependent malate exudation from roots is essential for Al resistance in Arabidopsis, in which the C2H2-type transcription factor SENSITIVE TO PROTONRHIZOTOXICITY1 (STOP1) play a critical role. In this study, we reveal that the RAE1-GL2-STOP1-RHD6 protein module regulated the ALMT1-mediated Al resistance. GL2, STOP1 and RHD6 directly target the promoter of ALMT1 to suppress or activate its transcriptional expression, respectively, and mutually influence their action on the promoter of ALMT1 by forming a protein complex. STOP1 mediates the expression of RHD6 and RHD6-regulated root growth inhibition, while GL2 and STOP1 suppress each other's expression at the transcriptional and translational level and regulate Al-inhibited root growth. F-box protein RAE1 degrades RHD6 via the 26S proteasome, leading to suppressed activity of the ALMT1 promoter. RHD6 inhibits the transcriptional expression of RAE1 by directly targeting its promoter. Unlike RHD6, RAE1 promotes the GL2 expression at the protein level and GL2 activates the expression of RAE1 at the transcriptional level by directly targeting its promoter. The study provides insights into the transcriptional regulation of ALMT1, revealing its significance in Al resistance and highlighting the crucial role of the STOP1-associated regulatory networks.


Asunto(s)
Aluminio , Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas , Regiones Promotoras Genéticas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Aluminio/toxicidad , Aluminio/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Regiones Promotoras Genéticas/genética , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Plantas Modificadas Genéticamente
2.
Plant Cell Environ ; 46(11): 3518-3541, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37574955

RESUMEN

Aluminium (Al) toxicity is one of the major constraint for crop production in acidic soil, and the inappropriate utilization of nitrogen fertilizer can accelerate soil acidification. Despite previous studies investigating the regulation of nitrogen forms in Al toxicity of plants, the underlying mechanism, particularly at the molecular level, remains unclear. This study aims to uncover the potentially regulatory mechanism of nitrate (NO3 - ) in the Al resistance of maize and Arabidopsis. NO3 - conservatively improves Al resistance in maize and Arabidopsis, with nitrate-elevated citrate synthesis and exudation potentially playing critical roles in excluding Al from the root symplast. ZmSLAH2 in maize and AtSLAH1 in Arabidopsis are essential for the regulation of citrate exudation and NO3 - -promoted Al resistance, with ZmMYB81 directly targeting the ZmSLAH2 promoter to activate its activity. Additionally, NO3 - transport is necessary for NO3 - -promoted Al resistance, with ZmNRT1.1A and AtNRT1.1 potentially playing vital roles. The suppression of NO3 - transport in roots by ammonium (NH4 + ) may inhibit NO3 - -promoted Al resistance. This study provides novel insights into the understanding of the crucial role of NO3 - -mediated signalling in the Al resistance of plants and offers guidance for nitrogen fertilization on acid soils.


Asunto(s)
Arabidopsis , Ácido Cítrico , Nitratos/análisis , Aluminio/toxicidad , Suelo , Nitrógeno , Raíces de Plantas/fisiología
3.
J Exp Bot ; 74(5): 1358-1371, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36609593

RESUMEN

Aluminium (Al) toxicity is one of the major constraints for crop growth and productivity in most of the acid soils worldwide. The primary lesion of Al toxicity is the rapid inhibition of root elongation. The root apex, especially the transition zone (TZ), has been identified as the major site of Al accumulation and injury. The signalling, in particular through phytohormones in the root apex TZ in response to Al stress, has been reported to play crucial roles in the regulation of Al-induced root growth inhibition. The binding of Al in the root apoplast is the initial event leading to inhibition of root elongation. Much progress has been made during recent years in understanding the molecular functions of cell wall modification and Al resistance-related genes in Al resistance or toxicity, and several signals including phytohormones, Ca2+, etc. have been reported to be involved in these processes. Here we summarize the recent advances in the understanding of Al-induced signalling and regulatory networks in the root apex involved in the regulation of Al-induced inhibition of root growth and Al toxicity/resistance. This knowledge provides novel insights into how Al-induced signals are recognized by root apical cells, transmitted from the apoplast to symplast, and finally initiate the defence system against Al. We conclude that the apoplast plays a decisive role in sensing and transmitting the Al-induced signals into the symplast, further stimulating a series of cellular responses (e.g. exudation of organic acid anions from roots) to adapt to the stress. We expect to stimulate new research by focusing on the signalling events in the root apex in response to Al stress, particularly taking into consideration the signal transduction between the meristem zone, TZ, and elongation zone and the apoplast and symplast.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Raíces de Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Aluminio/toxicidad , Aluminio/metabolismo , Meristema/metabolismo , Transducción de Señal
4.
CNS Neurol Disord Drug Targets ; 22(1): 137-147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35331124

RESUMEN

BACKGROUND: Recent studies have uncovered that vitexin compound B-1 (VB-1) can protect neurons against hypoxia/reoxygenation (H/R)-induced oxidative injury through suppressing NOX4 expression. OBJECTIVE: The aims of this study are to investigate whether VB-1 can protect the rat brain against ischemia/ reperfusion (I/R) injury and whether its effect on NOX4 expression is related to modulation of certain miRNAs expression. METHODS: Rats were subjected to 2 h of cerebral ischemia followed by 24 h of reperfusion to establish an I/R injury model, which showed an increase in neurological deficit score and infarct volume concomitant with an upregulation of NOX4 expression, increase in NOX activity, and downregulation of miR-92b. RESULTS: Administration of VB-1 reduced I/R cerebral injury accompanied by a reverse in NOX4 and miR-92b expression. Similar results were achieved in a neuron H/R injury model. Next, we evaluated the association of miR-92b with NOX4 by its mimics in the H/R model. H/R treatment increased neurons apoptosis concomitant with an upregulation of NOX4 and NOX activity while downregulation of miR-92b. All these effects were reversed in the presence of miR-92b mimics, confirming the function of miR-92b in suppressing NOX4 expression. CONCLUSION: We conclude the protective effect of VB-1 against rat cerebral I/R injury through a mechanism involving modulation of miR-92b/NOX4 pathway.


Asunto(s)
NADPH Oxidasa 4 , Daño por Reperfusión , Animales , Ratas , Encefalopatías
5.
Oxid Med Cell Longev ; 2022: 1296816, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35855866

RESUMEN

Ischemic stroke is a common disease that led to high mortality and high disability. NADPH oxidase 2- (NOX2-) mediated oxidative stress and long noncoding RNA have important roles in cerebral ischemia/reperfusion (CI/R) injury, whereas whether there is interplay between them remains to be clarified. This study was performed to observe the role of lncRNA PINK1-antisense RNA (PINK1-AS) in NOX2 expression regulation. An in vivo rat model (MCAO) and an in vitro cell model (H/R: hypoxia/reoxygenation) were utilized for CI/R oxidative stress injury investigation. The expression levels of lncRNA PINK1-AS, activating transcription factor 2 (ATF2), NOX2, and caspase-3 and the production level of ROS and cell apoptosis were significantly increased in CI/R injury model rats or in H/R-induced SH-SY5Y cells, but miR-203 was significantly downregulated. There was positive correlation between PINK1-AS expression level and ROS production level. PINK1-AS and ATF2 were found to be putative targets of miR-203. Knockdown of lncRNA PINK1-AS or ATF2 or the overexpression of miR-203 significantly reduced oxidative stress injury via inhibition of NOX2. Overexpression of lncRNA PINK1 significantly led to oxidative stress injury in SH-SY5Y cells through downregulating miR-203 and upregulating ATF2 and NOX2. lncRNA PINK1-AS and ATF2 were the targets of miR-203, and the lncRNA PINK1-AS/miR-203/ATF2/NOX2 axis plays pivotal roles in CI/R injury. Therefore, lncRNA PINK1-AS is a possible target for CR/I injury therapy by sponging miR-203.


Asunto(s)
Factor de Transcripción Activador 2 , Isquemia Encefálica , MicroARNs , ARN Largo no Codificante , Daño por Reperfusión , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo , Animales , Apoptosis/fisiología , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Infarto Cerebral/genética , Infarto Cerebral/metabolismo , Infarto Cerebral/patología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Estrés Oxidativo/genética , Proteínas Quinasas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo
6.
Mediators Inflamm ; 2022: 3101900, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757107

RESUMEN

Hyperlipidemia is a common metabolic disorder with high morbidity and mortality, which brings heavy burden on social. Understanding its pathogenesis and finding its potential therapeutic targets are the focus of current research in this field. In recent years, an increasing number of studies have proved that miRNAs play vital roles in regulating lipid metabolism and were considered as promising therapeutic targets for hyperlipidemia and related diseases. It is demonstrated that miR-191, miR-222, miR-224, miR-27a, miR-378a-3p, miR-140-5p, miR-483, and miR-520d-5p were closely associated with the pathogenesis of hyperlipidemia. In this review, we provide brief overviews about advances in miRNAs in hyperlipidemia and its potential clinical application value.


Asunto(s)
Hiperlipidemias , Enfermedades Metabólicas , MicroARNs , Humanos , Hiperlipidemias/genética , Metabolismo de los Lípidos/genética , MicroARNs/genética , MicroARNs/metabolismo
7.
New Phytol ; 233(6): 2471-2487, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34665465

RESUMEN

ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (ALMT1)-mediated malate exudation from roots is critical for aluminium (Al) resistance in Arabidopsis. Its upstream molecular signalling regulation is not yet well understood. The role of CALMODULIN-LIKE24 (CML24) in Al-inhibited root growth and downstream molecular regulation of ALMT1-meditaed Al resistance was investigated. CML24 confers Al resistance demonstrated by an increased root-growth inhibition of the cml24 loss-of-function mutant under Al stress. This occurs mainly through the regulation of the ALMT1-mediated malate exudation from roots. The mutation and overexpression of CML24 leads to an elevated and reduced Al accumulation in the cell wall of roots, respectively. Al stress induced both transcript and protein abundance of CML24 in root tips, especially in the transition zone. CML24 interacts with CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2 (CAMTA2) and promotes its transcriptional activity in the regulation of ALMT1 expression. This results in an enhanced malate exudation from roots and less root-growth inhibition under Al stress. Both CML24 and CAMTA2 interacted with WRKY46 suppressing the transcriptional repression of ALMT1 by WRKY46. The study provides novel insights into understanding of the upstream molecular signalling of the ALMT1-depdendent Al resistance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Transportadores de Anión Orgánico , Aluminio/metabolismo , Aluminio/toxicidad , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calmodulina/metabolismo , Regulación de la Expresión Génica de las Plantas , Malatos/metabolismo , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Raíces de Plantas/metabolismo
8.
Biomed Res Int ; 2021: 5535788, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34435045

RESUMEN

PTEN/AKT signaling plays pivotal role in myocardial ischemia reperfusion injury (MIRI), and miRNAs are involved in the regulation of AKT signaling. This study was designed to investigate the interaction between miR-129 and PTEN in MIRI. A MIRI rat model and a hypoxia reoxygenation (H/R) H9C2 cell model were constructed to simulate myocardial infarction clinically. TTC staining, creatine kinase (CK) activity, TUNEL/Hoechst double staining, Hoechst staining and flow cytometer were used for evaluating myocardial infarction or cell apoptosis. miR-129 mimic transfection experiment and luciferase reporter gene assay were conducted for investigating the function of miR-129 and the interaction between miR-129 and PTEN, respectively. Real-time PCR and western blotting were performed to analyze the gene expression. Compared to the control, MIRI rats presented obvious myocardial infarction, higher CK activity, increased expression of caspase-3 and PTEN, decreased expression of miR-129, and insufficient AKT phosphorylation. Consistently, H/R significantly increased the apoptosis of H9C2 cells, concomitant with the downregulation of miR-129, upregulation of PTEN and caspase-3, and insufficient phosphorylation of AKT, while miR-129 mimic obviously inhibited the expression of PTEN and caspase-3, increased the AKT phosphorylation, and decreased the cell apoptosis. Additionally, miR-129 mimic obviously decreased the relative luciferase activity in H9C2 cells. To our best knowledge, this study firstly found that the low expression of miR-129 accelerates the myocardial cell apoptosis by directly targeting 3'UTR of PTEN. miR-129 is an important biomarker for MIRI, as well as a potential therapy target.


Asunto(s)
MicroARNs/genética , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/patología , Fosfohidrolasa PTEN/metabolismo , Animales , Apoptosis/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Masculino , MicroARNs/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Fosfohidrolasa PTEN/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal
9.
Plant J ; 108(1): 55-66, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34273207

RESUMEN

Aluminium (Al) stress is a major limiting factor for worldwide crop production in acid soils. In Arabidopsis thaliana, the TAA1-dependent local auxin biosynthesis in the root-apex transition zone (TZ), the major perception site for Al toxicity, is crucial for the Al-induced root-growth inhibition, while the mechanism underlying Al-regulated auxin accumulation in the TZ is not fully understood. In the present study, the role of auxin transport in Al-induced local auxin accumulation in the TZ and root-growth inhibition was investigated. Our results showed that PIN-FORMED (PIN) proteins such as PIN1, PIN3, PIN4 and PIN7 and AUX1/LAX proteins such as AUX1, LAX1 and LAX2 were all ectopically up-regulated in the root-apex TZ in response to Al stress and coordinately regulated local auxin accumulation in the TZ and root-growth inhibition. The ectopic up-regulation of PIN1 in the TZ under Al stress was regulated by both ethylene and auxin, with auxin signalling acting downstream of ethylene. Al-induced PIN1 up-regulation and auxin accumulation in the root-apex TZ was also regulated by the calossin-like protein BIG. Together, our results provide insight into how Al stress induces local auxin accumulation in the TZ and root-growth inhibition through the local regulation of auxin transport.


Asunto(s)
Aluminio/toxicidad , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Estrés Fisiológico , Regulación hacia Arriba
10.
Biomed Rep ; 15(1): 56, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34007449

RESUMEN

An increase in liver gluconeogenesis is an important pathological phenomenon in type 2 diabetes mellitus (T2DM) and oxymatrine is an effective natural drug used for T2DM treatment. The present study aimed to explore the effect of oxymatrine on gluconeogenesis and elucidate the underlying mechanism. Male Sprague-Dawley rats were treated with a high-fat diet and streptozotocin for 4 weeks to induce T2DM, and HepG2 cells were treated with 55 mM glucose to simulate T2DM in vitro. T2DM rats were treated with oxymatrine (10 or 20 mg/kg weight) or metformin for 4 weeks, and HepG2 cells were treated with oxymatrine (0.1 or 1 µM), metformin (0.1 µM), or oxymatrine combined with MK-2206 (AKT inhibitor) for 24 h. Fasting blood glucose and insulin sensitivity of rats were measured to evaluate insulin resistance. Glucose production and uptake ability were measured to evaluate gluconeogenesis in HepG2 cells, and the expression of related genes was detected to explore the molecular mechanism. Additionally, the body weight, liver weight and liver index were measured and hematoxylin and eosin staining was performed to evaluate the effects of the disease. The fasting glucose levels of T2DM rats was 16.5 mmol/l, whereas in the control rats, it was 6.1 mmol/l. Decreased insulin sensitivity (K-value, 0.2), body weight loss (weight, 300 g), liver weight gain, liver index increase (value, 48) and morphological changes were observed in T2DM rats, accompanied by reduced AKT phosphorylation, and upregulated expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). High-glucose treatment significantly increased glucose production and decreased glucose uptake in HepG2 cells, concomitant with a decrease in AKT phosphorylation and increase of PEPCK and G6Pase expression. In vivo, oxymatrine dose-dependently increased the sensitivity of T2DM rats to insulin, increased AKT phosphorylation and decreased PEPCK and G6Pase expression in the liver, and reversed the liver morphological changes. In vitro, oxymatrine dose-dependently increased AKT phosphorylation and glucose uptake of HepG2 cells subjected to high-glucose treatment, which was accompanied by inhibition of the expression of the gluconeogenesis-related genes, PEPCK and G6Pase. MK-2206 significantly inhibited the protective effects of oxymatrine in high-glucose-treated cells. These data indicated that oxymatrine can effectively prevent insulin resistance and gluconeogenesis, and its mechanism may be at least partly associated with the regulation of PEPCK and G6Pase expression and AKT phosphorylation in the liver.

11.
Mol Med Rep ; 22(3): 2415-2423, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32705253

RESUMEN

NADPH oxidase 2 (NOX2) is a major subtype of NOX and is responsible for the generation of reactive oxygen species (ROS) in brain tissues. MicroRNAs (miRNAs/miRs) are important epigenetic regulators of NOX2. The present study aimed to identify the role of NOX2 miRNA­targets in ischemic stroke (IS). A rat cerebral ischemia/reperfusion (CI/R) injury model and a SH­SY5Y cell hypoxia/reoxygenation (H/R) model were used to simulate IS. Gene expression levels, ROS production and apoptosis in tissue or cells were determined, and bioinformatic analysis was conducted for target prediction of miRNA. In vitro experiments, including function­gain and luciferase activity assays, were also performed to assess the roles of miRNAs. The results indicated that NOX2 was significantly increased in brain tissues subjected to I/R and in SH­SY5Y cells subjected to H/R, while the expression of miR­532­3p (putative target of NOX2) was significantly decreased in brain tissues and plasma. Overexpression of miR­532­3p significantly suppressed NOX2 expression and ROS generation in SH­SY5Y cells subjected to H/R, as well as reduced the relative luciferase activity of cells transfected with a reporter gene plasmid. Collectively, these data indicated that miR­532­3p may be a target of NOX2 and a biomarker for CI/R injury. Thus, the present study may provide a novel target for drug development and IS therapy.


Asunto(s)
Isquemia Encefálica/genética , MicroARNs/genética , NADPH Oxidasa 2/genética , NADPH Oxidasa 2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regiones no Traducidas 3' , Animales , Biomarcadores/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Perfilación de la Expresión Génica , Humanos , Masculino , Ratas
12.
Biomed Pharmacother ; 124: 109860, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32000043

RESUMEN

Ischemic stroke is a devastating central nervous disease associated with oxidative stress and NOX2 is the main source of ROS responsible for brain tissue. miRNAs are a class of negative regulator of genes in mammals and involves the pathogenesis of ischemic stroke. This study aims to observe the role of target miRNA(miR-652) of NOX2 in ischemic stroke. A rat cerebral ischemia/reperfusion (CI/R) injury model and an SH-SY5Y cell hypoxia/reoxygenation(H/R) model were used to simulate ischemic stroke, and corresponding gene expression, biochemical indicators and pathophysiological indicators were measured to observe the role of miR-652. NOX2 significantly increased in brain tissues subjected to I/R or in SH-SY5Y cells subjected to H/R, while the expression level of miR-652(potential target of NOX2) significantly decreased in both brain tissues and plasma. Overexpression of miR-652 significantly suppressed NOX2 expression and ROS generation in H/R treated SH-SY5Y cells and reduced the relative luciferase activity of cells transfected with plasmid NOX2-WT (reporter gene plasmid). MiR-652 agomir significantly decreased the expression of NOX2 and ROS generation in brain tissues of CIR rats, as well as tissue injury. These data indicated that miR-652 protected rats from cerebral ischemia reperfusion injury by directly targeting NOX2, is a novel target for ischemic stroke therapy.


Asunto(s)
Isquemia Encefálica/prevención & control , MicroARNs/genética , Estrés Oxidativo/genética , Accidente Cerebrovascular/prevención & control , Animales , Isquemia Encefálica/genética , Línea Celular Tumoral , Humanos , Masculino , NADPH Oxidasa 2/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/complicaciones , Daño por Reperfusión/genética , Accidente Cerebrovascular/genética
13.
J Cell Biochem ; 120(9): 16185-16194, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31087709

RESUMEN

Insulin resistance plays a key role in the development and progression of type 2 diabetes mellitus (T2DM). Recent studies found that insulin resistance was associated with the dysfunction of KH-type splicing regulatory protein (KSRP) expression and AKT pathway, and that oxymatrine possesses an antidiabetic effect. The aim of the present study was to investigate whether the protection of oxymatrine against T2DM was associated with the modulation of the KSRP expression and AKT pathway. Sprague-Dawley rats were fed a high-fat diet and injected with streptozotocin intraperitoneally to induce T2DM, which led to an increase in blood glucose levels and insulin resistance, and a decrease in insulin sensitivity and glycogen synthesis concomitant with KSRP downregulation, PTEN upregulation, and AKT phosphorylation deficiency. The administration of oxymatrine decreased blood glucose levels and insulin resistance, increased insulin sensitivity, and improved glycogen synthesis in the liver of T2DM rats, through a reversal in the expression of KSRP, PTEN, and AKT. On the basis of these observations, we concluded that oxymatrine can protect T2DM rats from insulin resistance through the regulation of the KSRP, PETN, and AKT expression in the liver.


Asunto(s)
Alcaloides/administración & dosificación , Diabetes Mellitus Experimental/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinolizinas/administración & dosificación , Proteínas de Unión al ARN/metabolismo , Transactivadores/metabolismo , Alcaloides/farmacología , Animales , Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Inyecciones Intraperitoneales , Resistencia a la Insulina , Masculino , Quinolizinas/farmacología , Ratas , Ratas Sprague-Dawley , Estreptozocina
14.
Exp Ther Med ; 16(3): 1671-1678, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30186386

RESUMEN

Nicotinamide adenine dinucleotide phosphate oxidase (NOX)-derived reactive oxygen species (ROS) serve an important role in cerebral ischemia/reperfusion (I/R) injury. However, the mechanism by which ROS generation is regulated has not yet been fully elucidated. The present study aimed to explore the role of transforming growth factor-ß signaling in ROS generation. Sprague Dawley rats were subjected to I/R injury and PC-12 cells were transfected with small interfering RNA against activin receptor-like kinase (ALK)5 or hypoxia/reoxygenation (H/R). The results indicated that I/R or H/R significantly increased ALK5 expression, SMAD2/3 phosphorylation and NOX2/4 expression and activity, concomitant with ROS generation and apoptosis. In addition, ALK5 knockdown significantly reversed changes induced by H/R treatment in PC-12 cells. These results suggest that ALK5/SMAD2/3 signaling serves a key role in oxidative stress. To the best of our knowledge, this is the first study to demonstrate that ALK5/SMAD2/3 activation is associated with the regulation of NOX2/4 expression and exacerbates I/R injury.

15.
Cell Physiol Biochem ; 46(5): 2103-2113, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29723859

RESUMEN

BACKGROUND/AIMS: Ischemic stroke is still one of the leading debilitating diseases with high morbidity and mortality. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) play an important role in cerebral ischemia/reperfusion (I/R) injury. However, the mechanism underlying the regulation of ROS generation is still not fully elucidated. This study aims to explore the role of transforming growth beta (TGF-ß) signals in ROS generation. METHODS: Sprague-Dawley rats were subjected to I/R injury, and PC-12 cells were challenged by hypoxia/reoxygenation (H/R) and/or treated with activin receptor-like kinase (ALK5) inhibitor Sb505124 or siRNA against ALK5. Brain damage was evaluated using neurological scoring, triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, infarct volume measurement, TUNEL staining, and caspase-3 activity measurement. Expression of TGF-ß and oxidative stress-related genes was analyzed by real-time polymerase chain reaction and Western blot; NOX activity and ROS level were measured using spectrophotometry and fluorescence microscopy, respectively. RESULTS: I/R contributed to severe brain damage (impaired neurological function, brain infarction, tissue edema, apoptosis), TGF-ß signaling activation (upregulation of ALK5, phosphorylation of SMAD2/3) and oxidative stress (upregulation of NOX2/4, rapid release of ROS [oxidative burst]). However, Sb505124 significantly reversed these alterations and protected rats against I/R injury. As in the animal results, H/R also contributed to TGF-ß signaling activation and oxidative stress. Likewise, the inhibition of ALK5 or ALK5 knockdown significantly reversed these alterations in PC-12 cells. Other than ALK5 knockdown, ALK5 inhibition had no effect on the expression of ALK5 in PC-12 cells. CONCLUSIONS: Our studies demonstrated that TGF-ß signaling activation is involved in the regulation of NOX2/NOX4 expression and exacerbates cerebral I/R injury.


Asunto(s)
Isquemia Encefálica/genética , NADPH Oxidasa 2/genética , NADPH Oxidasa 4/genética , Estrés Oxidativo , Daño por Reperfusión/genética , Regulación hacia Arriba , Animales , Benzodioxoles/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Imidazoles/uso terapéutico , Masculino , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 4/metabolismo , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Piridinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
16.
Oncotarget ; 8(59): 99681-99692, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29245933

RESUMEN

MicroRNAs (miRNAs, miR) play a fundamental role in cerebral ischemia/reperfusion (I/R) injury. However, the role of miRNAs in toxic aldehyde and tyrosine accumulation is not fully elucidated. We constructed a cerebral I/R rat model and found that overexpression of miR-193 was associated with the accumulation of 4-Hydroxynonenal (4-HNE), Malondialdehyde (MDA), and tyrosine, and with the decrease of aldehyde dehydrogenase (ALDH2), tyrosine hydroxylase (TH), and dopamine. To unveil the molecular mechanism of the miR-193-mediated phenotype in I/R injury as described above, we performed bioinformatic analysis and found that ALDH2 was a potential target of miR-193. Through in vitro experiments (such as miR-193 mimic/inhibitor transfection, luciferase reporter gene plasmid transfection, and 4-HNE exposure) and in vivo infusion of miR-193 agomir, we demonstrated that miR-193 directly suppressed the expression of ALDH2 and led to toxic aldehyde accumulation, resulting in dysfunction of tyrosine hydroxylase. The present study suggests that the overexpression of miR-193 in a rat model exacerbated brain injury due to the following sequential process: targeted suppression of ALDH2, aldehyde accumulation, and tyrosine hydroxylase dysfunction, leading to tyrosine accumulation and insufficiency of dopamine synthesis.

17.
Oncotarget ; 8(39): 65302-65312, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-29029432

RESUMEN

Arsenic exposure produces hepatotoxicity. The common mechanism determining its toxicity is the generation of oxidative stress. Oxidative stress induced by arsenic leads to the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. (-)-Epigallocatechin-3-gallate (EGCG) possesses a potent antioxidant capacity and exhibits extensive pharmacological activities. This study aims to evaluate effects of EGCG on arsenic-induced hepatotoxicity and activation of Nrf2 pathway. Plasma activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase were measured; Histological analyses were conducted to observe morphological changes; Biochemical indexes such as oxidative stress (Catalase (CAT), malonyldialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), reactive oxygen species (ROS)), Nrf2 signaling related genes (Nrf2, Nqo1, and Ho-1) were assessed. The results showed that EGCG inhibited arsenic-induced hepatic pathological damage, liver ROS level and MDA level. Arsenic decreases the antioxidant enzymes SOD, GPX, and CAT activity and the decrease was inhibited by treatment of EGCG. Furthermore, EGCG attenuated the retention of arsenic in liver tissues and improved the expressions of Nrf2 signaling related genes (Nrf2, Nqo1, and Ho-1). These findings provide evidences that EGCG may be useful for reducing hepatotoxicity associated with oxidative stress by the activation of Nrf2 signaling pathway. Our findings suggest a possible mechanism of antioxidant EGCG in preventing hepatotoxicity, which implicate that EGCG may be a potential treatment for arsenicosis therapy.

18.
EMBO Rep ; 18(7): 1213-1230, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28600354

RESUMEN

Auxin acts synergistically with cytokinin to control the shoot stem-cell niche, while both hormones act antagonistically to maintain the root meristem. In aluminum (Al) stress-induced root growth inhibition, auxin plays an important role. However, the role of cytokinin in this process is not well understood. In this study, we show that cytokinin enhances root growth inhibition under stress by mediating Al-induced auxin signaling. Al stress triggers a local cytokinin response in the root-apex transition zone (TZ) that depends on IPTs, which encode adenosine phosphate isopentenyltransferases and regulate cytokinin biosynthesis. IPTs are up-regulated specifically in the root-apex TZ in response to Al stress and promote local cytokinin biosynthesis and inhibition of root growth. The process of root growth inhibition is also controlled by ethylene signaling which acts upstream of auxin. In summary, different from the situation in the root meristem, auxin acts with cytokinin in a synergistic way to mediate aluminum-induced root growth inhibition in Arabidopsis.


Asunto(s)
Aluminio/farmacología , Arabidopsis/efectos de los fármacos , Citocininas/fisiología , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Citocininas/biosíntesis , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/efectos de los fármacos , Meristema/genética , Meristema/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Transducción de Señal , Estrés Fisiológico
19.
Plant J ; 90(3): 491-504, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28181322

RESUMEN

A major factor determining aluminium (Al) sensitivity in higher plants is the binding of Al to root cell walls. The Al binding capacity of cell walls is closely linked to the extent of pectin methylesterification, as the presence of methyl groups attached to the pectin backbone reduces the net negative charge of this polymer and hence limits Al binding. Despite recent progress in understanding the molecular basis of Al resistance in a wide range of plants, it is not well understood how the methylation status of pectin is mediated in response to Al stress. Here we show in Arabidopsis that mutants lacking the gene LEUNIG_HOMOLOG (LUH), a member of the Groucho-like family of transcriptional co-repressor, are less sensitive to Al-mediated repression of root growth. This phenotype is correlated with increased levels of methylated pectin in the cell walls of luh roots as well as altered expression of cell wall-related genes. Among the LUH-repressed genes, PECTIN METHYLESTERASE46 (PME46) was identified as reducing Al binding to cell walls and hence alleviating Al-induced root growth inhibition by decreasing PME enzyme activity. seuss-like2 (slk2) mutants responded to Al in a similar way as luh mutants suggesting that a LUH-SLK2 complex represses the expression of PME46. The data are integrated into a model in which it is proposed that PME46 is a major inhibitor of pectin methylesterase activity within root cell walls.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Pared Celular/metabolismo , Proteínas Co-Represoras/metabolismo , Pectinas/metabolismo , Raíces de Plantas/metabolismo , Proteínas Represoras/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hidrolasas de Éster Carboxílico/genética , Proteínas Co-Represoras/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Proteínas Represoras/genética
20.
Plant Physiol ; 173(2): 1420-1433, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27932419

RESUMEN

Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet known. In an attempt to elucidate the role of JA, we found that exogenous application of JA enhanced the Al-induced root growth inhibition. Furthermore, phenotype analysis with mutants defective in either JA biosynthesis or signaling suggests that JA is involved in the regulation of Al-induced root growth inhibition. The expression of the JA receptor CORONATINE INSENSITIVE1 (COI1) and the key JA signaling regulator MYC2 was up-regulated in response to Al stress in the root tips. This process together with COI1-mediated Al-induced root growth inhibition under Al stress was controlled by ethylene but not auxin. Transcriptomic analysis revealed that many responsive genes under Al stress were regulated by JA signaling. The differential responsive of microtubule organization-related genes between the wild-type and coi1-2 mutant is consistent with the changed depolymerization of cortical microtubules in coi1 under Al stress. In addition, ALMT-mediated malate exudation and thus Al exclusion from roots in response to Al stress was also regulated by COI1-mediated JA signaling. Together, this study suggests that root growth inhibition is regulated by COI1-mediated JA signaling independent from auxin signaling and provides novel insights into the phytohormone-mediated root growth inhibition in response to Al stress.


Asunto(s)
Aluminio/toxicidad , Arabidopsis/efectos de los fármacos , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Aluminio/farmacocinética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ciclopentanos/farmacología , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Malatos/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA