Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
1.
Technol Health Care ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38759039

RESUMEN

BACKGROUND: In recent years, exoskeleton robot technology has developed rapidly. Exoskeleton robots that can be worn on a human body and provide additional strength, speed or other abilities. Exoskeleton robots have a wide range of applications, such as medical rehabilitation, logistics and disaster relief and other fields. OBJECTIVE: The study goal is to propose a lower limb assistive exoskeleton robot to provide extra power for wearers. METHODS: The mechanical structure of the exoskeleton robot was designed by using bionics principle to imitate human body shape, so as to satisfy the coordination of man-machine movement and the comfort of wearing. Then a gait prediction method based on neural network was designed. In addition, a control strategy according to iterative learning control was designed. RESULTS: The experiment results showed that the proposed exoskeleton robot can produce effective assistance and reduce the wearer's muscle force output. CONCLUSION: A lower limb assistive exoskeleton robot was introduced in this paper. The kinematics model and dynamic model of the exoskeleton robot were established. Tracking effects of joint angle displacement and velocity were analyzed to verify feasibility of the control strategy. The learning error of joint angle can be improved with increase of the number of iterations. The error of trajectory tracking is acceptable.

2.
Plants (Basel) ; 13(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38794447

RESUMEN

In response to the challenge of low recognition rates for similar phenotypic symptoms of tea diseases in low-light environments and the difficulty in detecting small lesions, a novel adaptive method for tea disease severity detection is proposed. This method integrates an image enhancement algorithm based on an improved EnlightenGAN network and an enhanced version of YOLO v8. The approach involves first enhancing the EnlightenGAN network through non-paired training on low-light-intensity images of various tea diseases, guiding the generation of high-quality disease images. This step aims to expand the dataset and improve lesion characteristics and texture details in low-light conditions. Subsequently, the YOLO v8 network incorporates ResNet50 as its backbone, integrating channel and spatial attention modules to extract key features from disease feature maps effectively. The introduction of adaptive spatial feature fusion in the Neck part of the YOLOv8 module further enhances detection accuracy, particularly for small disease targets in complex backgrounds. Additionally, the model architecture is optimized by replacing traditional Conv blocks with ODConv blocks and introducing a new ODC2f block to reduce parameters, improve performance, and switch the loss function from CIOU to EIOU for a faster and more accurate recognition of small targets. Experimental results demonstrate that YOLOv8-ASFF achieves a tea disease detection accuracy of 87.47% and a mean average precision (mAP) of 95.26%. These results show a 2.47 percentage point improvement over YOLOv8, and a significant lead of 9.11, 9.55, and 7.08 percentage points over CornerNet, SSD, YOLOv5, and other models, respectively. The ability to swiftly and accurately detect tea diseases can offer robust theoretical support for assessing tea disease severity and managing tea growth. Moreover, its compatibility with edge computing devices and practical application in agriculture further enhance its value.

3.
Cancer Lett ; 592: 216923, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38697462

RESUMEN

Liver metastasis is common in patients with gallbladder cancer (GBC), imposing a significant challenge in clinical management and serving as a poor prognostic indicator. However, the mechanisms underlying liver metastasis remain largely unknown. Here, we report a crucial role of tyrosine aminotransferase (TAT) in liver metastasis of GBC. TAT is frequently up-regulated in GBC tissues. Increased TAT expression is associated with frequent liver metastasis and poor prognosis of GBC patients. Overexpression of TAT promotes GBC cell migration and invasion in vitro, as well as liver metastasis in vivo. TAT knockdown has the opposite effects. Intriguingly, TAT promotes liver metastasis of GBC by potentiating cardiolipin-dependent mitophagy. Mechanistically, TAT directly binds to cardiolipin and leads to cardiolipin externalization and subsequent mitophagy. Moreover, TRIM21 (Tripartite Motif Containing 21), an E3 ubiquitin ligase, interacts with TAT. The histine residues 336 and 338 at TRIM21 are essential for this binding. TRIM21 preferentially adds the lysine 63 (K63)-linked ubiquitin chains on TAT principally at K136. TRIM21-mediated TAT ubiquitination impairs its dimerization and mitochondrial location, subsequently inhibiting tumor invasion and migration of GBC cells. Therefore, our study identifies TAT as a novel driver of GBC liver metastasis, emphasizing its potential as a therapeutic target.


Asunto(s)
Movimiento Celular , Neoplasias de la Vesícula Biliar , Neoplasias Hepáticas , Ribonucleoproteínas , Ubiquitinación , Humanos , Neoplasias de la Vesícula Biliar/patología , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/metabolismo , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Animales , Línea Celular Tumoral , Masculino , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Femenino , Mitofagia , Invasividad Neoplásica , Ratones , Ratones Desnudos , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica , Ratones Endogámicos BALB C
4.
Sci Rep ; 14(1): 11704, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778121

RESUMEN

Chemotherapeutic agents can inhibit the proliferation of malignant cells due to their cytotoxicity, which is limited by collateral damage. Dihydroartemisinin (DHA), has a selective anti-cancer effect, whose target and mechanism remain uncovered. The present work aims to examine the selective inhibitory effect of DHA as well as the mechanisms involved. The findings revealed that the Lewis cell line (LLC) and A549 cell line (A549) had an extremely rapid proliferation rate compared with the 16HBE cell line (16HBE). LLC and A549 showed an increased expression of NRAS compared with 16HBE. Interestingly, DHA was found to inhibit the proliferation and facilitate the apoptosis of LLC and A549 with significant anti-cancer efficacy and down-regulation of NRAS. Results from molecular docking and cellular thermal shift assay revealed that DHA could bind to epidermal growth factor receptor (EGFR) molecules, attenuating the EGF binding and thus driving the suppressive effect. LLC and A549 also exhibited obvious DNA damage in response to DHA. Further results demonstrated that over-expression of NRAS abated DHA-induced blockage of NRAS. Moreover, not only the DNA damage was impaired, but the proliferation of lung cancer cells was also revitalized while NRAS was over-expression. Taken together, DHA could induce selective anti-lung cancer efficacy through binding to EGFR and thereby abolishing the NRAS signaling pathway, thus leading to DNA damage, which provides a novel theoretical basis for phytomedicine molecular therapy of malignant tumors.


Asunto(s)
Artemisininas , Proliferación Celular , Daño del ADN , Receptores ErbB , GTP Fosfohidrolasas , Neoplasias Pulmonares , Proteínas de la Membrana , Transducción de Señal , Receptores ErbB/metabolismo , Humanos , Proliferación Celular/efectos de los fármacos , Artemisininas/farmacología , Daño del ADN/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , GTP Fosfohidrolasas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Simulación del Acoplamiento Molecular , Células A549 , Ratones , Antineoplásicos/farmacología , Línea Celular Tumoral , Unión Proteica
5.
Int J Biol Macromol ; : 132575, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38788863

RESUMEN

Rice husks are rich in xylan, which can be hydrolyzed by xylanase to form xylooligosaccharides (XOS). XOS are a functional oligosaccharide such as improving gut microbiota and antioxidant properties. In this study, the structure and functional characteristics of XOS were studied. The optimal xylanase hydrolysis conditions through response surface methodology (RSM) were: xylanase dosage of 3000 U/g, hydrolysis time of 3 h, hydrolysis temperature of 50 °C. Under this condition, the yield of XOS was 150.9 mg/g. The TG-DTG curve showed that XOS began to decompose at around 200 °C. When the concentration of XOS reached 1.0 g/L, the clearance rate of DPPH reached 65.76 %, and the scavenging rate of OH reached 62.10 %, while the clearance rate of ABTS free radicals reached 97.70 %, which was equivalent to the clearance rate of VC. XOS had a proliferative effect on four probiotics: Lactobacillus plantarum, Lactobacillus brucelli, Lactobacillus acidophilus, and Lactobacillus rhamnosus. However, the further experiments are needed to explore the improvement effect of XOS on human gut microbiota, laying a foundation for the effective utilization of XOS. XOS have a wide range of sources, low price, and broad development prospects. The reasonable utilization of XOS can bring greater economic benefits.

6.
Toxicol Appl Pharmacol ; 487: 116960, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735592

RESUMEN

BACKGROUND: The intestinal metabolites are involved in the initiation, progression and metastasis of colorectal cancer (CRC). They are a potential source of agents for cancer therapy. Our previous study identified altered faecal metabolites between CRC patients and healthy volunteers. However, no specific metabolite was clearly illustrated for CRC therapy. RESULTS: We found that the level of xylulose was lower in the stools of CRC patients than in those of healthy volunteers. Xylulose inhibited cell growth without affecting the cell cycle by inducing apoptosis in CRC cells, which was evidenced by increased expression of the proapoptotic proteins C-PARP and C-Caspase3 and decreased expression of the antiapoptotic protein BCL-2 in CRC cells. Mechanistically, xylulose reduced the activity of the MAPK signalling pathway, represented by reduced phosphorylation of JNK, ERK, and P38. Furthermore, an ALI model was used to show the tumour killing ability of xylulose on human CRC spheres, as well as human colorectal adenoma (AD) spheres. CONCLUSION: Xylulose inhibits CRC growth by inducing apoptosis through attenuation of the MAPK signalling pathway. These results suggest that xylulose may serve as an effective agent for CRC therapy.

7.
Nucleic Acids Res ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783035

RESUMEN

High-throughput screening rapidly tests an extensive array of chemical compounds to identify hit compounds for specific biological targets in drug discovery. However, false-positive results disrupt hit compound screening, leading to wastage of time and resources. To address this, we propose ChemFH, an integrated online platform facilitating rapid virtual evaluation of potential false positives, including colloidal aggregators, spectroscopic interference compounds, firefly luciferase inhibitors, chemical reactive compounds, promiscuous compounds, and other assay interferences. By leveraging a dataset containing 823 391 compounds, we constructed high-quality prediction models using multi-task directed message-passing network (DMPNN) architectures combining uncertainty estimation, yielding an average AUC value of 0.91. Furthermore, ChemFH incorporated 1441 representative alert substructures derived from the collected data and ten commonly used frequent hitter screening rules. ChemFH was validated with an external set of 75 compounds. Subsequently, the virtual screening capability of ChemFH was successfully confirmed through its application to five virtual screening libraries. Furthermore, ChemFH underwent additional validation on two natural products and FDA-approved drugs, yielding reliable and accurate results. ChemFH is a comprehensive, reliable, and computationally efficient screening pipeline that facilitates the identification of true positive results in assays, contributing to enhanced efficiency and success rates in drug discovery. ChemFH is freely available via https://chemfh.scbdd.com/.

8.
PLoS One ; 19(5): e0296930, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709729

RESUMEN

BACKGROUND: During the COVID pandemic, residency program's social media presence increased to aid in residency recruitment by attempting to increase engagement and readily available information for applicants across specialties. However, little information exists on what characteristics and content on obstetrics and gynecology (OBGYN) residency program accounts attract more followers or engagement. OBJECTIVES: To identify social media trends in OBGYN residencies and determine which aspects of programs influence the number of followers and interaction with content posted. METHODS: We performed a retrospective review of ACGME accredited OBGYN programs and determined their presence on Instagram and X in the fall of 2021. Content from the thirty programs with the most followers was analyzed independently by two authors. Multivariate analysis and a linear mixed model were used to characterize and evaluate content on Instagram and X. RESULTS: Most programs utilized Instagram (88.5%, N = 262/296) and were managed solely by residents (84.4%, N = 108/128). Number of followers on Instagram positively correlated with features such as program size, Instagram profile duration, and Doximity rankings (p < 0.0x01). Programs on X had more followers if their profile had a longer duration, followed more individuals, or were ranked higher on Doximity. The most posted Instagram content was biographical and social in nature. Instagram posts with the highest engagement were awards and/or the Match. CONCLUSIONS: Understanding what social media content attracts more followers and increases engagement is crucial as it likely impacts OBGYN resident recruitment. Professional groups should establish guidelines for social media use in recruitment for the protection of both residents and applicants.


Asunto(s)
Ginecología , Internado y Residencia , Obstetricia , Medios de Comunicación Sociales , Obstetricia/educación , Ginecología/educación , Humanos , Estudios Retrospectivos , COVID-19/epidemiología , Femenino
9.
New Phytol ; 242(6): 2524-2540, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641854

RESUMEN

Leaf senescence is a complex process strictly regulated by various external and endogenous factors. However, the key signaling pathway mediating leaf senescence remains unknown. Here, we show that Arabidopsis SPX1/2 negatively regulate leaf senescence genetically downstream of the strigolactone (SL) pathway. We demonstrate that the SL receptor AtD14 and MAX2 mediate the age-dependent degradation of SPX1/2. Intriguingly, we uncover an age-dependent accumulation of SLs in leaves via transcriptional activation of SL biosynthetic genes by the transcription factors (TFs) SPL9/15. Furthermore, we reveal that SPX1/2 interact with the WRKY75 subclade TFs to inhibit their DNA-binding ability and thus repress transcriptional activation of salicylic acid (SA) biosynthetic gene SA Induction-Deficient 2, gating the age-dependent SA accumulation in leaves at the leaf senescence onset stage. Collectively, our new findings reveal a signaling pathway mediating sequential activation of SL and salicylate biosynthesis for the onset of leaf senescence in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Lactonas , Hojas de la Planta , Senescencia de la Planta , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lactonas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ácido Salicílico/metabolismo , Salicilatos/metabolismo , Transducción de Señal , Unión Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética
10.
Sci Rep ; 14(1): 8203, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589529

RESUMEN

The neural network method is a type of machine learning that has made significant advances over the past few years in a variety of fields, particularly text, speech, images, videos, etc. In areas where data is unstructured, traditional machine learning has not been able to surpass the 'glass ceiling'; therefore, researchers have turned to neural networks as auxiliary tools to achieve significant breakthroughs or develop new research methods. An array of computational chemistry challenges can be addressed using neural networks, including virtual screening, quantitative structure-activity relationships, protein structure prediction, materials design, quantum chemistry, and property prediction, among others. This paper proposes a strategy for predicting the chemical properties of fruits by using graph neural networks, and it aims to provide some guidance to researchers and streamline the identification process.


Asunto(s)
Frutas , Redes Neurales de la Computación , Aprendizaje Automático , Relación Estructura-Actividad Cuantitativa
11.
J Nanobiotechnology ; 22(1): 154, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581017

RESUMEN

The combination of immune checkpoint inhibitors and immunogenic cell death (ICD) inducers has become a promising strategy for the treatment of various cancers. However, its efficacy remains unmet because of the dense stroma and defective vasculatures in the tumor microenvironment (TME) that restricts the intratumoral infiltration of cytotoxic T lymphocytes (CTLs). Herein, cancer-associated fibroblasts (CAFs)-targeted nanoemulsions are tailored to combine the ICD induction and the TME reprogramming to sensitize checkpoint blockade immunotherapy. Melittin, as an ICD inducer and an antifibrotic agent, is efficiently encapsulated into the nanoemulsion accompanied by a nitric oxide donor to improve its bioavailability and tumor targeting. The nanoemulsions exhibited dual functionality by directly inducing direct cancer cell death and enhancing the tumoral immunogenicity, while also synergistically reprogramming the TME through reversing the activated CAFs, decreasing collagen deposition and restoring tumor vessels. Consequently, these nanemulsions successfully facilitated the CTLs infiltration and suppressing the recruitment of immunosuppressive cells. A combination of AE-MGNPs and anti-CTLA-4 antibody greatly elicited a striking level of antitumor T-cell response to suppress tumor growth in CAFs-rich colorectal tumor models. Our work emphasized the integration of the ICD induction with simultaneous modulation of the TME to enhance the sensitivity of patients to checkpoint blockade immunotherapy.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Neoplasias , Humanos , Microambiente Tumoral , Inhibidores de Puntos de Control Inmunológico/farmacología , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Inmunoterapia , Línea Celular Tumoral
12.
J Environ Sci (China) ; 143: 164-175, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38644014

RESUMEN

Utilizing CO2 for bio-succinic acid production is an attractive approach to achieve carbon capture and recycling (CCR) with simultaneous production of a useful platform chemical. Actinobacillus succinogenes and Basfia succiniciproducens were selected and investigated as microbial catalysts. Firstly, the type and concentration of inorganic carbon concentration and glucose concentration were evaluated. 6 g C/L MgCO3 and 24 g C/L glucose were found to be the optimal basic operational conditions, with succinic acid production and carbon yield of over 30 g/L and over 40%, respectively. Then, for maximum gaseous CO2 fixation, carbonate was replaced with CO2 at different ratios. The "less carbonate more CO2" condition of the inorganic carbon source was set as carbonate: CO2 = 1:9 (based on the mass of carbon). This condition presented the highest availability of CO2 by well-balanced chemical reaction equilibrium and phase equilibrium, showing the best performance with regarding CO2 fixation (about 15 mg C/(L·hr)), with suppressed lactic acid accumulation. According to key enzymes analysis, the ratio of phosphoenolpyruvate carboxykinase to lactic dehydrogenase was enhanced at high ratios of gaseous CO2, which could promote glucose conversion through the succinic acid path. To further increase gaseous CO2 fixation and succinic acid production and selectivity, stepwise CO2 addition was evaluated. 50%-65% increase in inorganic carbon utilization was obtained coupled with 20%-30% increase in succinic acid selectivity. This was due to the promotion of the succinic acid branch of the glucose metabolism, while suppressing the pyruvate branch, along with the inhibition on the conversion from glucose to lactic acid.


Asunto(s)
Dióxido de Carbono , Ácido Succínico , Dióxido de Carbono/metabolismo , Ácido Succínico/metabolismo , Actinobacillus/metabolismo , Glucosa/metabolismo
13.
Pestic Biochem Physiol ; 201: 105891, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685253

RESUMEN

The fall armyworm (Spodoptera frugiperda) was found to have invaded China in December 2018, and in just one year, crops in 26 provinces were heavily affected. Currently, the most effective method for emergency control of fulminant pests is to use of chemical pesticides. Recently, most fall armyworm populations in China were begining to exhibite low level resistance to chlorantraniliprole. At present, it is not possible to sensitively reflect the low level resistance of S. frugiperda by detecting target mutation and detoxification enzyme activity. In this study we found that 12 successive generations of screening with chlorantraniliprole caused S. frugiperda to develop low level resistance to this insecticide, and this phenotype was not attribute to genetic mutations in S. frugiperda, but rather to a marked increase in the relative amount of the symbiotic bacteria Sphingomonas. Using FISH and qPCR assays, we determined the amount of Sphingomonas in the gut of S. frugiperda and found Sphingomonas accumulation to be highest in the 3rd-instar larvae. Additionally, Sphingomonas was observed to provide a protective effect to against chlorantraniliprole stress to S. frugiperda. With the increase of the resistance to chlorantraniliprole, the abundance of bacteria also increased, we propose Sphingomonas monitoring could be adapted into an early warning index for the development of chlorantraniliprole resistance in S. frugiperda populations, such that timely measures can be taken to delay or prevent the widespread propagation of resistance to this highly useful agricultural chemical in S. frugiperda field populations.


Asunto(s)
Insecticidas , Larva , Sphingomonas , Spodoptera , ortoaminobenzoatos , Animales , Spodoptera/efectos de los fármacos , Spodoptera/microbiología , ortoaminobenzoatos/farmacología , Insecticidas/farmacología , Insecticidas/toxicidad , Larva/efectos de los fármacos , Sphingomonas/efectos de los fármacos , Sphingomonas/genética , Resistencia a los Insecticidas/genética
14.
Plant J ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659310

RESUMEN

The Q transcription factor plays important roles in improving multiple wheat domestication traits such as spike architecture, threshability and rachis fragility. However, whether and how it regulates abiotic stress adaptation remain unclear. We found that the transcriptional expression of Q can be induced by NaCl and abscisic acid treatments. Using the q mutants generated by CRISPR/Cas9 and Q overexpression transgenic lines, we showed that the domesticated Q gene causes a penalty in wheat salt tolerance. Then, we demonstrated that Q directly represses the transcription of TaSOS1-3B and reactive oxygen species (ROS) scavenging genes to regulate Na+ and ROS homeostasis in wheat. Furthermore, we showed that wheat salt tolerance protein TaWD40 interacts with Q to competitively interfere with the interaction between Q and the transcriptional co-repressor TaTPL. Taken together, our findings reveal that Q directly represses the expression of TaSOS1 and some ROS scavenging genes, thus causing a harmful effect on wheat salt tolerance.

15.
Quant Imaging Med Surg ; 14(3): 2280-2295, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38545042

RESUMEN

Background: The reporting and data system (RADS) has been researched across the world since it was first developed. This study used bibliometrics to analyze the research trends and current status of this field over the past almost 23 years and explored possible future research hotspots. Methods: We searched the Web of Science (WOS) literature on RADSs from January 1, 2000, to November 1, 2022, and evaluated the findings visually with VOSviewer (1.6.18), CiteSpace (6.1.3), and the "bibliometrix" package in R version 4.2.1. Results: We included 6,239 publications from 88 countries and regions. The number of published has shown an overall growth trend, especially since 2016. The United States was the country with the highest number of publications and citations. The top 10 most productive institutions in RADS research were mainly from South Korea and the United States. Kim EK was the most published author, and Turkbey B had the most cited publication. European Radiology had the most publications on the subject, while Radiology was the most influential journal. Magnetic resonance imaging, carcinoma, ultrasound, RADS, mammography, breast neoplasms, and diagnosis were the most common keywords. Artificial intelligence (AI) appears to be an emerging hotspot in the research of RADS. Conclusions: This study provides an overview of the development status of research into RADSs over the past 23 years. Research into RADSs has included various systems of the body, with the most studied being the breast, prostate, liver, and thyroid. In terms of auxiliary diagnosis, there is an increasing amount of research into the application of AI in RADSs, which along with the interpretability of AI, will be a hotspot of research in the following years.

16.
Am J Perinatol ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531377

RESUMEN

OBJECTIVE: Our objective was to evaluate the quality of obstetrical ultrasound images obtained with coconut oil compared with commercial ultrasound gel and to assess patient acceptability. STUDY DESIGN: This was a randomized two-period crossover study in which 40 pregnant patients had standard biometry images obtained with both coconut oil and commercial ultrasound gel during their growth or anatomy ultrasound. All images were then rated by two blinded maternal-fetal medicine physicians on quality, resolution, and detail using a 0 to 100 scale. Contrasts obtained from linear mixed models were used to estimate the differences in image parameters between the agents. Participant experience was evaluated with an acceptability survey which included five items measured on a five-point Likert scale. RESULTS: Image quality, as rated by physicians, was found to be equivalent between commercial ultrasound gel and coconut oil. Additionally, there was not a statistically significant difference in image resolution or detail between the two coupling agents. The overall patient experience was significantly lower for commercial ultrasound gel when compared with coconut oil (mean difference = - 5.48, 95% confidence interval = [-6.89, -4.06]). CONCLUSION: Ultrasound images collected with coconut oil as the coupling agent are equivalent in quality to those collected using commercial ultrasound gel. Patients also preferred the use of coconut oil during their ultrasound, making its use a possible way to improve the patient ultrasound experience. Coconut oil has the potential as an alternative coupling agent that could significantly increase access to ultrasound use in resource-limited settings. KEY POINTS: · Coconut oil produces quality images during obstetrical ultrasounds.. · Patients prefer the use of coconut oil to standard ultrasound gel during obstetrical ultrasounds.. · Coconut oil is a coupling agent that could increase ultrasound use in resource-limited settings..

17.
Adv Sci (Weinh) ; : e2400096, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477439

RESUMEN

Chiral 1, n-bis(boronate) plays a crucial role in organic synthesis and medicinal chemistry. However, their catalytic and asymmetric synthesis has long posed a challenge in terms of operability and accessibility from readily available substrates. The recent discovery of the C═C bond formation through ß-C elimination of methylenecyclopropanes (MCP) has provided an exciting opportunity to enhance molecular complexity. In this study, the catalyzed asymmetric cascade hydroboration of MCP is developed. By employing different ligands, various homoallylic boronate intermediate are obtained through the hydroboration ring opening process. Subsequently, the cascade hydroboration with HBpin or B2 pin2 resulted in the synthesis of enantioenriched chiral 1,3- and 1,4-bis(boronates) in high yields, accompanied by excellent chemo- and enantioselectivities. The selective transformation of these two distinct C─B bonds also demonstrated their application potential in organic synthesis.

18.
Technol Cancer Res Treat ; 23: 15330338241235769, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38465611

RESUMEN

Objectives: The purpose of this research is to summarize the structure of radiomics-based knowledge and to explore potential trends and priorities by using bibliometric analysis. Methods: Select radiomics-related publications from 2012 to October 2022 from the Science Core Collection Web site. Use VOSviewer (version 1.6.18), CiteSpace (version 6.1.3), Tableau (version 2022), Microsoft Excel and Rstudio's free online platforms (http://bibliometric.com) for co-writing, co-citing, and co-occurrence analysis of countries, institutions, authors, references, and keywords in the field. The visual analysis is also carried out on it. Results: The study included 6428 articles. Since 2012, there has been an increase in research papers based on radiomics. Judging by publications, China has made the largest contribution in this area. We identify the most productive institutions and authors as Fudan University and Tianjie. The top three magazines with the most publications are《FRONTIERS IN ONCOLOGY》, 《EUROPEAN RADIOLOGY》, and 《CANCERS》. According to the results of reference and keyword analysis, "deep learning, nomogram, ultrasound, f-18-fdg, machine learning, covid-19, radiogenomics" has been determined as the main research direction in the future. Conclusion: Radiomics is in a phase of vigorous development with broad prospects. Cross-border cooperation between countries and institutions should be strengthened in the future. It can be predicted that the development of deep learning-based models and multimodal fusion models will be the focus of future research. Advances in knowledge: This study explores the current state of research and hot spots in the field of radiomics from multiple perspectives, comprehensively, and objectively reflecting the evolving trends in imaging-related research and providing a reference for future research.


Asunto(s)
COVID-19 , Radiómica , Humanos , Bibliometría , COVID-19/epidemiología , China , Fluorodesoxiglucosa F18
19.
Br J Haematol ; 204(4): 1307-1324, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462771

RESUMEN

Multiple myeloma (MM) is the second most common malignant haematological disease with a poor prognosis. The limit therapeutic progress has been made in MM patients with cancer relapse, necessitating deeper research into the molecular mechanisms underlying its occurrence and development. A genome-wide CRISPR-Cas9 loss-of-function screening was utilized to identify potential therapeutic targets in our research. We revealed that COQ2 plays a crucial role in regulating MM cell proliferation and lipid peroxidation (LPO). Knockout of COQ2 inhibited cell proliferation, induced cell cycle arrest and reduced tumour growth in vivo. Mechanistically, COQ2 promoted the activation of the MEK/ERK cascade, which in turn stabilized and activated MYC protein. Moreover, we found that COQ2-deficient MM cells increased sensitivity to the LPO activator, RSL3. Using an inhibitor targeting COQ2 by 4-CBA enhanced the sensitivity to RSL3 in primary CD138+ myeloma cells and in a xenograft mouse model. Nevertheless, co-treatment of 4-CBA and RSL3 induced cell death in bortezomib-resistant MM cells. Together, our findings suggest that COQ2 promotes cell proliferation and tumour growth through the activation of the MEK/ERK/MYC axis and targeting COQ2 could enhance the sensitivity to ferroptosis in MM cells, which may be a promising therapeutic strategy for the treatment of MM patients.


Asunto(s)
Mieloma Múltiple , Animales , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Peroxidación de Lípido , Quinasas de Proteína Quinasa Activadas por Mitógenos/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico
20.
Bioorg Chem ; 146: 107308, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531151

RESUMEN

Genome mining of the Actinomycete Crossiella cryophila facilitated the discovery of a minimal terpenoid biosynthetic gene cluster of cry consisting of a class I terpene cyclase CryA and a CYP450 monooxygenase CryB. Heterologous expression of cry allowed the isolation and characterization of two new sesquiterpenoids, ent-viridiflorol (1) and cryophilain (2). Notably, cryophilain (2) possesses a 5/7/3-fused tricyclic skeleton bearing a distinctive bridgehead hydroxy group. The combined in vivo and in vitro experiments revealed that CryA, the first ent-viridiflorol terpene cyclase, catalyzes farnesyl diphosphate to form the 5/7/3 sesquiterpene core scaffold and P450 CryB serves as a tailoring enzyme responsible for installing a hydroxy group at the bridgehead carbon.


Asunto(s)
Actinobacteria , Actinomycetales , Sesquiterpenos , Terpenos , Sesquiterpenos/metabolismo , Actinobacteria/genética , Actinobacteria/metabolismo , Actinomycetales/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA