Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Commun ; 15(1): 7847, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245668

RESUMEN

In eukaryotes, the leading strand DNA is synthesized by Polε and the lagging strand by Polδ. These replicative polymerases have higher processivity when paired with the DNA clamp PCNA. While the structure of the yeast Polε catalytic domain has been determined, how Polε interacts with PCNA is unknown in any eukaryote, human or yeast. Here we report two cryo-EM structures of human Polε-PCNA-DNA complex, one in an incoming nucleotide bound state and the other in a nucleotide exchange state. The structures reveal an unexpected three-point interface between the Polε catalytic domain and PCNA, with the conserved PIP (PCNA interacting peptide)-motif, the unique P-domain, and the thumb domain each interacting with a different protomer of the PCNA trimer. We propose that the multi-point interface prevents other PIP-containing factors from recruiting to PCNA while PCNA functions with Polε. Comparison of the two states reveals that the finger domain pivots around the [4Fe-4S] cluster-containing tip of the P-domain to regulate nucleotide exchange and incoming nucleotide binding.


Asunto(s)
Microscopía por Crioelectrón , Antígeno Nuclear de Célula en Proliferación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/química , Humanos , Holoenzimas/química , Holoenzimas/metabolismo , Modelos Moleculares , ADN Polimerasa II/metabolismo , ADN Polimerasa II/química , ADN Polimerasa II/genética , ADN/metabolismo , ADN/química , Unión Proteica , Dominio Catalítico , Replicación del ADN , Proteínas de Unión a Poli-ADP-Ribosa
2.
Science ; 385(6708): eadk5901, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39088616

RESUMEN

The proliferating cell nuclear antigen (PCNA) clamp encircles DNA to hold DNA polymerases (Pols) to DNA for processivity. The Ctf18-RFC PCNA loader, a replication factor C (RFC) variant, is specific to the leading-strand Pol (Polε). We reveal here the underlying mechanism of Ctf18-RFC specificity to Polε using cryo-electron microscopy and biochemical studies. We found that both Ctf18-RFC and Polε contain specific structural features that direct PCNA loading onto DNA. Unlike other clamp loaders, Ctf18-RFC has a disordered ATPase associated with a diverse cellular activities (AAA+) motor that requires Polε to bind and stabilize it for efficient PCNA loading. In addition, Ctf18-RFC can pry prebound Polε off of DNA, then load PCNA onto DNA and transfer the PCNA-DNA back to Polε. These elements in both Ctf18-RFC and Polε provide specificity in loading PCNA onto DNA for Polε.


Asunto(s)
Replicación del ADN , Antígeno Nuclear de Célula en Proliferación , Proteína de Replicación C , Humanos , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , Microscopía por Crioelectrón , ADN/química , ADN/metabolismo , ADN Polimerasa II/metabolismo , ADN Polimerasa II/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas Nucleares , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/química , Unión Proteica , Proteína de Replicación C/metabolismo , Proteína de Replicación C/química , Dominios Proteicos
3.
Nat Struct Mol Biol ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871854

RESUMEN

Humans have three different proliferating cell nuclear antigen (PCNA) clamp-loading complexes: RFC and CTF18-RFC load PCNA onto DNA, but ATAD5-RFC can only unload PCNA from DNA. The underlying structural basis of ATAD5-RFC unloading is unknown. We show here that ATAD5 has two unique locking loops that appear to tie the complex into a rigid structure, and together with a domain that plugs the DNA-binding chamber, prevent conformation changes required for DNA binding, likely explaining why ATAD5-RFC is exclusively a PCNA unloader. These features are conserved in the yeast PCNA unloader Elg1-RFC. We observe intermediates in which PCNA bound to ATAD5-RFC exists as a closed planar ring, a cracked spiral or a gapped spiral. Surprisingly, ATAD5-RFC can open a PCNA gap between PCNA protomers 2 and 3, different from the PCNA protomers 1 and 3 gap observed in all previously characterized clamp loaders.

4.
Sci Adv ; 10(9): eadl1739, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38427736

RESUMEN

During DNA replication, the proliferating cell nuclear antigen (PCNA) clamps are loaded onto primed sites for each Okazaki fragment synthesis by the AAA+ heteropentamer replication factor C (RFC). PCNA encircling duplex DNA is quite stable and is removed from DNA by the dedicated clamp unloader Elg1-RFC. Here, we show the cryo-EM structure of Elg1-RFC in various states with PCNA. The structures reveal essential features of Elg1-RFC that explain how it is dedicated to PCNA unloading. Specifically, Elg1 contains two external loops that block opening of the Elg1-RFC complex for DNA binding, and an "Elg1 plug" domain that fills the central DNA binding chamber, thereby reinforcing the exclusive PCNA unloading activity of Elg1-RFC. Elg1-RFC was capable of unloading PCNA using non-hydrolyzable AMP-PNP. Both RFC and Elg1-RFC could remove PCNA from covalently closed circular DNA, indicating that PCNA unloading occurs by a mechanism that is distinct from PCNA loading. Implications for the PCNA unloading mechanism are discussed.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Saccharomyces cerevisiae , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Antígeno Nuclear de Célula en Proliferación/química , Proteína de Replicación C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Cell Rep ; 42(7): 112694, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37392384

RESUMEN

Rad24-RFC (replication factor C) loads the 9-1-1 checkpoint clamp onto the recessed 5' ends by binding a 5' DNA at an external surface site and threading the 3' single-stranded DNA (ssDNA) into 9-1-1. We find here that Rad24-RFC loads 9-1-1 onto DNA gaps in preference to a recessed 5' end, thus presumably leaving 9-1-1 on duplex 3' ss/double-stranded DNA (dsDNA) after Rad24-RFC ejects from DNA. We captured five Rad24-RFC-9-1-1 loading intermediates using a 10-nt gap DNA. We also determined the structure of Rad24-RFC-9-1-1 using a 5-nt gap DNA. The structures reveal that Rad24-RFC is unable to melt DNA ends and that a Rad24 loop limits the dsDNA length in the chamber. These observations explain Rad24-RFC's preference for a preexisting gap of over 5-nt ssDNA and suggest a direct role of the 9-1-1 in gap repair with various TLS (trans-lesion synthesis) polymerases in addition to signaling the ATR kinase.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Daño del ADN , ADN/metabolismo , Replicación del ADN , Proteína de Replicación C/metabolismo , Biología , Antígeno Nuclear de Célula en Proliferación/metabolismo
6.
bioRxiv ; 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37205533

RESUMEN

Recent structural studies show the Rad24-RFC loads the 9-1-1 checkpoint clamp onto a recessed 5' end by binding the 5' DNA on Rad24 at an external surface site and threading the 3' ssDNA into the well-established internal chamber and into 9-1-1. We find here that Rad24-RFC loads 9-1-1 onto DNA gaps in preference to a recessed 5' DNA end, thus presumably leaving 9-1-1 on a 3' ss/ds DNA after Rad24-RFC ejects from the 5' gap end and may explain reports of 9-1-1 directly functioning in DNA repair with various TLS polymerases, in addition to signaling the ATR kinase. To gain a deeper understanding of 9-1-1 loading at gaps we report high-resolution structures of Rad24-RFC during loading of 9-1-1 onto 10-nt and 5-nt gapped DNAs. At a 10-nt gap we captured five Rad24-RFC-9-1-1 loading intermediates in which the 9-1-1 DNA entry gate varies from fully open to fully closed around DNA using ATPγS, supporting the emerging view that ATP hydrolysis is not needed for clamp opening/closing, but instead for dissociation of the loader from the clamp encircling DNA. The structure of Rad24-RFC-9-1-1 at a 5-nt gap shows a 180° axially rotated 3'-dsDNA which orients the template strand to bridge the 3'- and 5'- junctions with a minimum 5-nt ssDNA. The structures reveal a unique loop on Rad24 that limits the length of dsDNA in the inner chamber, and inability to melt DNA ends unlike RFC, thereby explaining Rad24-RFC's preference for a preexisting ssDNA gap and suggesting a direct role in gap repair in addition to its checkpoint role.

7.
Methods Enzymol ; 672: 173-202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35934475

RESUMEN

The replication machinery that synthesizes new copies of chromosomal DNA is located at the junction where double-stranded DNA is separated into its two strands. This replication fork DNA structure is at the heart of most assays involving DNA helicases. The helicase enzyme unwinds the replication fork structure into two single-stranded templates which are converted into two daughter duplexes by other proteins, including DNA polymerases. In eukaryotes, the CMG (Cdc45/Mcm2-7/GINS) helicase plays the pivotal role of unwinding the parental duplex DNA and at the same time interacts with numerous other proteins, including the leading strand polymerase, Pol ɛ. This chapter first describes how we design and prepare synthetic replication forks used in our CMG-related assays. Then we describe how to load CMG onto the fork. The Mcm2-7 motor subunits of CMG form a closed ring, as do all cellular replicative helicases, that encircles ssDNA for helicase function. Thus, the first step in these assays is the loading of CMG onto the fork DNA, followed by DNA unwinding and replication. We explain protocols for different strategies of preloading CMG onto the DNA fork using different ATP analogues. Additionally, the presence of Mcm10, an intimate partner of CMG, affects how CMG is preloaded onto a fork substrate.


Asunto(s)
Replicación del ADN , Proteínas de Mantenimiento de Minicromosoma , Proteínas de Ciclo Celular/metabolismo , ADN/química , ADN de Cadena Simple , Proteínas de Mantenimiento de Minicromosoma/química , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Nucleótidos
8.
Elife ; 112022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35829698

RESUMEN

RFC uses ATP to assemble PCNA onto primed sites for replicative DNA polymerases δ and ε. The RFC pentamer forms a central chamber that binds 3' ss/ds DNA junctions to load PCNA onto DNA during replication. We show here five structures that identify a second DNA binding site in RFC that binds a 5' duplex. This 5' DNA site is located between the N-terminal BRCT domain and AAA+ module of the large Rfc1 subunit. Our structures reveal ideal binding to a 7-nt gap, which includes 2 bp unwound by the clamp loader. Biochemical studies show enhanced binding to 5 and 10 nt gaps, consistent with the structural results. Because both 3' and 5' ends are present at a ssDNA gap, we propose that the 5' site facilitates RFC's PCNA loading activity at a DNA damage-induced gap to recruit gap-filling polymerases. These findings are consistent with genetic studies showing that base excision repair of gaps greater than 1 base requires PCNA and involves the 5' DNA binding domain of Rfc1. We further observe that a 5' end facilitates PCNA loading at an RPA coated 30-nt gap, suggesting a potential role of the RFC 5'-DNA site in lagging strand DNA synthesis.


Asunto(s)
ADN , Proteínas de Saccharomyces cerevisiae , Microscopía por Crioelectrón , ADN/metabolismo , Reparación del ADN , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Proteína de Replicación C/química , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Nat Struct Mol Biol ; 29(4): 376-385, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35314830

RESUMEN

The 9-1-1 DNA checkpoint clamp is loaded onto 5'-recessed DNA to activate the DNA damage checkpoint that arrests the cell cycle. The 9-1-1 clamp is a heterotrimeric ring that is loaded in Saccharomyces cerevisiae by Rad24-RFC (hRAD17-RFC), an alternate clamp loader in which Rad24 replaces Rfc1 in the RFC1-5 clamp loader of proliferating cell nuclear antigen (PCNA). The 9-1-1 clamp loading mechanism has been a mystery, because, unlike RFC, which loads PCNA onto a 3'-recessed junction, Rad24-RFC loads the 9-1-1 ring onto a 5'-recessed DNA junction. Here we report two cryo-EM structures of Rad24-RFC-DNA with a closed or 27-Å open 9-1-1 clamp. The structures reveal a completely unexpected mechanism by which a clamp can be loaded onto DNA. Unlike RFC, which encircles DNA, Rad24 binds 5'-DNA on its surface, not inside the loader, and threads the 3' ssDNA overhang into the 9-1-1 clamp from above the ring.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Replicación del ADN , Péptidos y Proteínas de Señalización Intracelular , Antígeno Nuclear de Célula en Proliferación/genética , Proteína de Replicación C/química , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35042821

RESUMEN

The adenosine triphosphate (ATP) analog ATPγS often greatly slows or prevents enzymatic ATP hydrolysis. The eukaryotic CMG (Cdc45, Mcm2 to 7, GINS) replicative helicase is presumed unable to hydrolyze ATPγS and thus unable to perform DNA unwinding, as documented for certain other helicases. Consequently, ATPγS is often used to "preload" CMG onto forked DNA substrates without unwinding before adding ATP to initiate helicase activity. We find here that CMG does hydrolyze ATPγS and couples it to DNA unwinding. Indeed, the rate of unwinding of a 20- and 30-mer duplex fork of different sequences by CMG is only reduced 1- to 1.5-fold using ATPγS compared with ATP. These findings imply that a conformational change is the rate-limiting step during CMG unwinding, not hydrolysis. Instead of using ATPγS for loading CMG onto DNA, we demonstrate here that nonhydrolyzable adenylyl-imidodiphosphate (AMP-PNP) can be used to preload CMG onto a forked DNA substrate without unwinding.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , ADN Helicasas/metabolismo , Complejos Multiproteicos/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/metabolismo , ADN/química , ADN Helicasas/genética , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Biomedicines ; 9(10)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34680530

RESUMEN

Crosstalk between synovial fibroblasts (SF) and immune cells plays a central role in the development of rheumatoid arthritis (RA). Janus kinase inhibitors (JAKi) have proven efficacy in the treatment of RA, although clinical responses are heterogeneous. Currently, little is known regarding how JAKi affect pro- and anti-inflammatory circuits in the bidirectional interplay between SF and immune cells. Here, we examined the effects of tofacitinib, baricitinib and upadacitinib on crosstalk between SF and T or B lymphocytes in vitro and compared them with those of biologic disease modifying anti-rheumatic drugs (bDMARDs). JAKi dose-dependently suppressed cytokine secretion of T helper (Th) cells and decreased interleukin (IL)-6 and matrix metalloproteinase (MMP)3 secretion of SF stimulated by Th cells. Importantly, JAK inhibition attenuated the enhanced memory response of chronically stimulated SF. Vice versa, JAKi reduced the indoleamine-2,3-dioxygenase (IDO)1-mediated suppression of T cell-proliferation by SF. Remarkably, certain bDMARDs were as efficient as JAKi in suppressing the IL-6 and MMP3 secretion of SF stimulated by Th (adalimumab, secukinumab) or B cells (canakinumab) and combining bDMARDs with JAKi had synergistic effects. In conclusion, JAKi limit pro-inflammatory circuits in the crosstalk between SF and lymphocytes; however, they also weaken the immunosuppressive functions of SF. Both effects were dose-dependent and may contribute to heterogeneity in clinical response to treatment.

12.
Arthritis Res Ther ; 23(1): 56, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33588937

RESUMEN

BACKGROUND: A dysregulated glucose metabolism in synovial fibroblasts (SF) has been associated with their aggressive phenotype in rheumatoid arthritis (RA). Even though T helper (Th) cells are key effector cells in the propagation and exacerbation of synovitis in RA, little is known about their influence on the metabolism of SF. Thus, this study investigates the effect of Th cells on the glucose metabolism and phenotype of SF and how this is influenced by the blockade of cytokines, janus kinases (JAKs) and glycolysis. METHODS: SF from patients with RA or osteoarthritis (OA) were cultured in the presence of a stable glucose isotopomer ([U-13C]-glucose) and stimulated with the conditioned media of activated Th cells (ThCM). Glucose consumption and lactate production were measured by proton nuclear magnetic resonance (1H NMR) spectroscopy. Cytokine secretion was quantified by ELISA. The expression of glycolytic enzymes was analysed by PCR, western blot and immunofluorescence. JAKs were blocked using either baricitinib or tofacitinib and glycolysis by using either 3-bromopyruvate or FX11. RESULTS: Quiescent RASF produced significantly higher levels of lactate, interleukin (IL)-6 and matrix metalloproteinase (MMP) 3 than OASF. Stimulation by ThCM clearly changed the metabolic profile of both RASF and OASF by inducing a shift towards aerobic glycolysis with strongly increased lactate production together with a rise in IL-6 and MMP3 secretion. Interestingly, chronic stimulation of OASF by ThCM triggered an inflammatory phenotype with significantly increased glycolytic activity compared to unstimulated, singly stimulated or re-stimulated OASF. Finally, in contrast to cytokine-neutralizing biologics, inhibition of JAKs or glycolytic enzymes both significantly reduced lactate production and cytokine secretion by Th cell-stimulated SF. CONCLUSIONS: Soluble mediators released by Th cells drive SF towards a glycolytic and pro-inflammatory phenotype. Targeting of JAKs or glycolytic enzymes both potently modulate SF's glucose metabolism and decrease the release of IL-6 and MMP3. Thus, manipulation of glycolytic pathways could represent a new therapeutic strategy to decrease the pro-inflammatory phenotype of SF.


Asunto(s)
Fibroblastos , Membrana Sinovial , Células Cultivadas , Glucólisis , Humanos , Fenotipo , Membrana Sinovial/metabolismo , Linfocitos T Colaboradores-Inductores
13.
Subcell Biochem ; 96: 233-258, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33252731

RESUMEN

In all cell types, a multi-protein machinery is required to accurately duplicate the large duplex DNA genome. This central life process requires five core replisome factors in all cellular life forms studied thus far. Unexpectedly, three of the five core replisome factors have no common ancestor between bacteria and eukaryotes. Accordingly, the replisome machines of bacteria and eukaryotes have important distinctions in the way that they are organized and function. This chapter outlines the major replication proteins that perform DNA duplication at replication forks, with particular attention to differences and similarities in the strategies used by eukaryotes and bacteria.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Bacterias/enzimología , Bacterias/genética , Eucariontes/enzimología , Eucariontes/genética
14.
Biochem Soc Trans ; 48(6): 2769-2778, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33300972

RESUMEN

The replication of DNA in chromosomes is initiated at sequences called origins at which two replisome machines are assembled at replication forks that move in opposite directions. Interestingly, in vivo studies observe that the two replication forks remain fastened together, often referred to as a replication factory. Replication factories containing two replisomes are well documented in cellular studies of bacteria (Escherichia coli and Bacillus subtilis) and the eukaryote, Saccharomyces cerevisiae. This basic twin replisome factory architecture may also be preserved in higher eukaryotes. Despite many years of documenting the existence of replication factories, the molecular details of how the two replisome machines are tethered together has been completely unknown in any organism. Recent structural studies shed new light on the architecture of a eukaryote replisome factory, which brings with it a new twist on how a replication factory may function.


Asunto(s)
Bacillus subtilis/metabolismo , Replicación del ADN , Escherichia coli/metabolismo , Origen de Réplica , Saccharomyces cerevisiae/metabolismo , Cromosomas/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Dimerización , Epigénesis Genética , Nucleosomas/metabolismo , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Elife ; 82019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31589141

RESUMEN

The current view is that eukaryotic replisomes are independent. Here we show that Ctf4 tightly dimerizes CMG helicase, with an extensive interface involving Psf2, Cdc45, and Sld5. Interestingly, Ctf4 binds only one Pol α-primase. Thus, Ctf4 may have evolved as a trimer to organize two helicases and one Pol α-primase into a replication factory. In the 2CMG-Ctf43-1Pol α-primase factory model, the two CMGs nearly face each other, placing the two lagging strands toward the center and two leading strands out the sides. The single Pol α-primase is centrally located and may prime both sister replisomes. The Ctf4-coupled-sister replisome model is consistent with cellular microscopy studies revealing two sister forks of an origin remain attached and are pushed forward from a protein platform. The replication factory model may facilitate parental nucleosome transfer during replication.


Asunto(s)
ADN Polimerasa I/metabolismo , Replicación del ADN , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Unión Proteica , Multimerización de Proteína
16.
Elife ; 82019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31560343

RESUMEN

The discovery of a biomolecular condensate involved in DNA replication has wide-ranging implications.


Asunto(s)
Proteínas de Ciclo Celular , Complejo de Reconocimiento del Origen/genética , ADN , Replicación del ADN
18.
Elife ; 62017 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-28869037

RESUMEN

Replicative helicases in all cell types are hexameric rings that unwind DNA by steric exclusion in which the helicase encircles the tracking strand only and excludes the other strand from the ring. This mode of translocation allows helicases to bypass blocks on the strand that is excluded from the central channel. Unlike other replicative helicases, eukaryotic CMG helicase partially encircles duplex DNA at a forked junction and is stopped by a block on the non-tracking (lagging) strand. This report demonstrates that Mcm10, an essential replication protein unique to eukaryotes, binds CMG and greatly stimulates its helicase activity in vitro. Most significantly, Mcm10 enables CMG and the replisome to bypass blocks on the non-tracking DNA strand. We demonstrate that bypass occurs without displacement of the blocks and therefore Mcm10 must isomerize the CMG-DNA complex to achieve the bypass function.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , ADN de Hongos/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Complejos Multienzimáticos/metabolismo
19.
Curr Biol ; 27(5): R174-R176, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28267969

RESUMEN

DNA sliding clamps are rings that tether certain enzymes to DNA. How clamp proteins slide on DNA has remained a mystery. A new crystal structure, together with molecular dynamics and NMR studies, has revealed how the human PCNA clamp slides on DNA.


Asunto(s)
Replicación del ADN , ADN , Humanos , Simulación de Dinámica Molecular , Antígeno Nuclear de Célula en Proliferación/genética
20.
Crit Rev Biochem Mol Biol ; 51(3): 135-49, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27160337

RESUMEN

The machines that decode and regulate genetic information require the translation, transcription and replication pathways essential to all living cells. Thus, it might be expected that all cells share the same basic machinery for these pathways that were inherited from the primordial ancestor cell from which they evolved. A clear example of this is found in the translation machinery that converts RNA sequence to protein. The translation process requires numerous structural and catalytic RNAs and proteins, the central factors of which are homologous in all three domains of life, bacteria, archaea and eukarya. Likewise, the central actor in transcription, RNA polymerase, shows homology among the catalytic subunits in bacteria, archaea and eukarya. In contrast, while some "gears" of the genome replication machinery are homologous in all domains of life, most components of the replication machine appear to be unrelated between bacteria and those of archaea and eukarya. This review will compare and contrast the central proteins of the "replisome" machines that duplicate DNA in bacteria, archaea and eukarya, with an eye to understanding the issues surrounding the evolution of the DNA replication apparatus.


Asunto(s)
Replicación del ADN , Evolución Molecular , Biosíntesis de Proteínas , Transcripción Genética , Animales , ADN/genética , Variación Genética , Humanos , Modelos Moleculares , Proteínas/genética , ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA