Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Fluids Barriers CNS ; 21(1): 32, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38584257

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which is associated with various neurological symptoms, including nausea, dizziness, headache, encephalitis, and epileptic seizures. SARS-CoV-2 is considered to affect the central nervous system (CNS) by interacting with the blood-brain barrier (BBB), which is defined by tight junctions that seal paracellular gaps between brain microvascular endothelial cells (BMECs). Although SARS-CoV-2 infection of BMECs has been reported, the detailed mechanism has not been fully elucidated. METHODS: Using the original strain of SARS-CoV-2, the infection in BMECs was confirmed by a detection of intracellular RNA copy number and localization of viral particles. BMEC functions were evaluated by measuring transendothelial electrical resistance (TEER), which evaluates the integrity of tight junction dynamics, and expression levels of proinflammatory genes. BMEC signaling pathway was examined by comprehensive RNA-seq analysis. RESULTS: We observed that iPSC derived brain microvascular endothelial like cells (iPSC-BMELCs) were infected with SARS-CoV-2. SARS-CoV-2 infection resulted in decreased TEER. In addition, SARS-CoV-2 infection decreased expression levels of tight junction markers CLDN3 and CLDN11. SARS-CoV-2 infection also increased expression levels of proinflammatory genes, which are known to be elevated in patients with COVID-19. Furthermore, RNA-seq analysis revealed that SARS-CoV-2 dysregulated the canonical Wnt signaling pathway in iPSC-BMELCs. Modulation of the Wnt signaling by CHIR99021 partially inhibited the infection and the subsequent inflammatory responses. CONCLUSION: These findings suggest that SARS-CoV-2 infection causes BBB dysfunction via Wnt signaling. Thus, iPSC-BMELCs are a useful in vitro model for elucidating COVID-19 neuropathology and drug development.


Asunto(s)
COVID-19 , Células Madre Pluripotentes Inducidas , Humanos , SARS-CoV-2 , Vía de Señalización Wnt , Células Endoteliales/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Encéfalo/irrigación sanguínea , Barrera Hematoencefálica/metabolismo
2.
Regul Toxicol Pharmacol ; 133: 105201, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35691450

RESUMEN

The benchmark dose (BMD) approach is updated to create an international harmonizing process following rapid theoretical sophistication. We calculated the lower limit of BMD confidence interval (BMDL) for carcinogenicity based on 193 tumorigenicity bioassay data published in 50 pesticide risk assessment reports by the Food Safety Commission of Japan (FSCJ) to validate the appropriateness and necessity for the refinement of the FSCJ-established BMD guidance. Three well-known BMD software, PROAST, BMDS, and BBMD were used to compare their BMDLs with no-observed-adverse-effect levels (NOAELs) for carcinogenicity. Recently implemented methodologies such as model averaging or Bayesian inference were also used. Our results indicate that the BMD approach provides a point of departure similar to the NOAEL approach if the data used exhibit a clear dose-response relationship. In some cases, particularly in software with a frequentist approach, the calculation failed to provide BMDL or provided considerably lower BMDLs than NOAELs. However, most of the datasets that resulted in failed calculations or extremely low BMDLs exhibited unclear dose-response relationships, i.e., non-monotonous and sporadic responses. The expert review on the shape of the dose-response plot would help better apply the BMD approach. Furthermore, we observed that Bayesian approaches provided fewer failed or extreme BMD calculations than the frequentist approaches.


Asunto(s)
Benchmarking , Plaguicidas , Teorema de Bayes , Benchmarking/métodos , Intervalos de Confianza , Relación Dosis-Respuesta a Droga , Japón , Nivel sin Efectos Adversos Observados , Plaguicidas/toxicidad , Medición de Riesgo/métodos , Programas Informáticos
3.
Biol Pharm Bull ; 45(5): 649-658, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35491169

RESUMEN

Growing evidence suggests that cancer originates from cancer stem cells (CSCs), which can be identified by aldehyde dehydrogenase (ALDH) activity-based flow cytometry. However, the regulation of CSC growth is not fully understood. In the present study, we investigated the effects of Transforming Growth Factor-ß (TGFß) in breast CSC expansion. Stimulation with TGFß increased the ALDH-positive breast CSC population via the phosphorylation of sphingosine kinase 1 (SphK1), a sphingosine-1-phosphate (S1P)-producing enzyme, and subsequent S1P-mediated S1P receptor 3 (S1PR3) activation. These data suggest that TGFß promotes breast CSC expansion via the ALK5/SphK1/S1P/S1PR3 signaling pathway. Our findings provide new insights into the role of TGFß in the regulation of CSCs.


Asunto(s)
Neoplasias , Factor de Crecimiento Transformador beta , Ligandos , Células Madre Neoplásicas , Fosforilación , Transducción de Señal , Factor de Crecimiento Transformador beta/farmacología
4.
Int J Mol Sci ; 23(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35216080

RESUMEN

Triple-negative breast cancer (TNBC) is a highly aggressive cancer for which targeted therapeutic agents are limited. Growing evidence suggests that TNBC originates from breast cancer stem cells (BCSCs), and elucidation of the molecular mechanisms controlling BCSC proliferation will be crucial for new drug development. We have previously reported that the lysosphingolipid sphingosine-1-phosphate mediates the CSC phenotype, which can be identified as the ALDH-positive cell population in several types of human cancer cell lines. In this study, we have investigated additional lipid receptors upregulated in BCSCs. We found that lysophosphatidic acid (LPA) receptor 3 was highly expressed in ALDH-positive TNBC cells. The LPAR3 antagonist inhibited the increase in ALDH-positive cells after LPA treatment. Mechanistically, the LPA-induced increase in ALDH-positive cells was dependent on intracellular calcium ion (Ca2+), and the increase in Ca2+ was suppressed by a selective inhibitor of transient receptor potential cation channel subfamily C member 3 (TRPC3). Moreover, IL-8 production was involved in the LPA response via the activation of the Ca2+-dependent transcriptional factor nuclear factor of activated T cells. Taken together, our findings provide new insights into the lipid-mediated regulation of BCSCs via the LPA-TRPC3 signaling axis and suggest several potential therapeutic targets for TNBC.


Asunto(s)
Lisofosfolípidos/metabolismo , Células Madre Neoplásicas/metabolismo , Canales Catiónicos TRPC/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Mama/metabolismo , Calcio/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Interleucina-8/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal/fisiología , Esfingosina/análogos & derivados , Esfingosina/metabolismo
5.
Development ; 148(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34519339

RESUMEN

Notch-Delta signaling regulates many developmental processes, including tissue homeostasis and maintenance of stem cells. Upon interaction of juxtaposed cells via Notch and Delta proteins, intracellular domains of both transmembrane proteins are cleaved and translocate to the nucleus. Notch intracellular domain activates target gene expression; however, the role of the Delta intracellular domain remains elusive. Here, we show the biological function of Delta like 1 intracellular domain (D1ICD) by modulating its production. We find that the sustained production of D1ICD abrogates cell proliferation but enhances neurogenesis in the developing dorsal root ganglia (DRG), whereas inhibition of D1ICD production promotes cell proliferation and gliogenesis. D1ICD acts as an integral component of lateral inhibition mechanism by inhibiting Notch activity. In addition, D1ICD promotes neurogenesis in a Notch signaling-independent manner. We show that D1ICD binds to Erk1/2 in neural crest stem cells and inhibits the phosphorylation of Erk1/2. In summary, our results indicate that D1ICD regulates DRG development by modulating not only Notch signaling but also the MAP kinase pathway.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Sistema de Señalización de MAP Quinasas , Neurogénesis , Receptores Notch/metabolismo , Animales , Sitios de Unión , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Proliferación Celular , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Células 3T3 NIH , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Unión Proteica
6.
J Med Genet ; 56(9): 622-628, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31015262

RESUMEN

BACKGROUND: Congenital scoliosis (CS) is a common vertebral malformation. Spondylocostal dysostosis (SCD) is a rare skeletal dysplasia characterised by multiple vertebral malformations and rib anomalies. In a previous study, a compound heterozygosity for a null mutation and a risk haplotype composed by three single-nucleotide polymorphisms in TBX6 have been reported as a disease-causing model of CS. Another study identified bi-allelic missense variants in a SCD patient. The purpose of our study is to identify TBX6 variants in CS and SCD and examine their pathogenicity. METHODS: We recruited 200 patients with CS or SCD and investigated TBX6 variants. We evaluated the pathogenicity of the variants by in silico prediction and in vitro experiments. RESULTS: We identified five 16p11.2 deletions, one splice-site variant and five missense variants in 10 patients. In vitro functional assays for missense variants identified in the previous and present studies demonstrated that most of the variants caused abnormal localisation of TBX6 proteins. We confirmed mislocalisation of TBX6 proteins in presomitic mesoderm cells induced from SCD patient-derived iPS cells. In induced cells, we found decreased mRNA expressions of TBX6 and its downstream genes were involved in somite formation. All CS patients with missense variants had the risk haplotype in the opposite allele, while a SCD patient with bi-allelic missense variants did not have the haplotype. CONCLUSIONS: Our study suggests that bi-allelic loss of function variants of TBX6 cause a spectrum of phenotypes including CS and SCD, depending on the severity of the loss of TBX6 function.


Asunto(s)
Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Alelos , Hernia Diafragmática/diagnóstico , Hernia Diafragmática/genética , Mutación con Pérdida de Función , Escoliosis/congénito , Escoliosis/diagnóstico , Columna Vertebral/anomalías , Proteínas de Dominio T Box/genética , Biología Computacional/métodos , Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Mutación Missense
7.
Commun Biol ; 2: 57, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30775458

RESUMEN

The CRISPR-Cas9 system has been successfully applied in many organisms as a powerful genome-editing tool. Undoubtedly, it will soon be applied to human genome editing, including gene therapy. We have previously reported that unintentional DNA sequences derived from retrotransposons, genomic DNA, mRNA and vectors are captured at double-strand breaks (DSBs) sites when DSBs are introduced by the CRISPR-Cas9 system. Therefore, it is possible that unintentional insertions associated with DSB repair represent a potential risk for human genome editing gene therapies. To address this possibility, comprehensive sequencing of DSB sites was performed. Here, we report that exosome-mediated horizontal gene transfer occurs in DSB repair during genome editing. Exosomes are present in all fluids from living animals, including seawater and breathing mammals, suggesting that exosome-mediated horizontal gene transfer is the driving force behind mammalian genome evolution. The findings of this study highlight an emerging new risk for this leading-edge technology.


Asunto(s)
Sistemas CRISPR-Cas , Reparación del ADN , ADN/genética , Exosomas/genética , Edición Génica/ética , Transferencia de Gen Horizontal , Genoma , Animales , Bovinos , ADN/metabolismo , Roturas del ADN de Doble Cadena , Embrión de Mamíferos , Escherichia coli/genética , Escherichia coli/metabolismo , Exosomas/metabolismo , Cabras , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Células 3T3 NIH , Plásmidos/química , Plásmidos/metabolismo , Retroelementos , Elementos de Nucleótido Esparcido Corto
8.
Front Chem ; 5: 34, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28664156

RESUMEN

Retrotransposons are abundant in mammalian genomes and can modulate the gene expression of surrounding genes by disrupting endogenous binding sites for transcription factors (TFs) or providing novel TFs binding sites within retrotransposon sequences. Here, we show that a (C/T)CACACCT sequence motif in ORR1A, ORR1B, ORR1C, and ORR1D, Long Terminal Repeats (LTRs) of MaLR endogenous retrovirus (ERV), is the direct target of Tbx6, an evolutionary conserved family of T-box TFs. Moreover, by comparing gene expression between control mice (Tbx6 +/-) and Tbx6-deficient mice (Tbx6 -/-), we demonstrate that at least four genes, Twist2, Pitx2, Oscp1, and Nfxl1, are down-regulated with Tbx6 deficiency. These results suggest that ORR1A, ORR1B, ORR1C and ORR1D may contribute to the evolution of mammalian embryogenesis.

9.
Hum Mutat ; 38(3): 317-323, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28054739

RESUMEN

Congenital scoliosis (CS) occurs as a result of vertebral malformations and has an incidence of 0.5-1/1,000 births. Recently, TBX6 on chromosome 16p11.2 was reported as a disease gene for CS; about 10% of Chinese CS patients were compound heterozygotes for rare null mutations and a common haplotype defined by three SNPs in TBX6. All patients had hemivertebrae. We recruited 94 Japanese CS patients, investigated the TBX6 locus for both mutations and the risk haplotype, examined transcriptional activities of mutant TBX6 in vitro, and evaluated clinical and radiographic features. We identified TBX6 null mutations in nine patients, including a missense mutation that had a loss of function in vitro. All had the risk haplotype in the opposite allele. One of the mutations showed dominant negative effect. Although all Chinese patients had one or more hemivertebrae, two Japanese patients did not have hemivertebra. The compound heterozygosity of null mutations and the common risk haplotype in TBX6 also causes CS in Japanese patients with similar incidence. Hemivertebra was not a specific type of spinal malformation in TBX6-associated CS (TACS). A heterozygous TBX6 loss-of-function mutation has been reported in a family with autosomal-dominant spondylocostal dysostosis, but it may represent a spectrum of the same disease with TACS.


Asunto(s)
Anomalías Congénitas/genética , Haplotipos , Heterocigoto , Mutación con Pérdida de Función , Escoliosis/genética , Proteínas de Dominio T Box/genética , Adolescente , Niño , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 16 , Anomalías Congénitas/diagnóstico , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Linaje , Fenotipo , Radiografía , Escoliosis/diagnóstico
10.
Dev Biol ; 380(2): 172-84, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23727513

RESUMEN

The vertebrae are derived from the sclerotome of somites. Formation of the vertebral body involves a process called resegmentation, by which the caudal half of a sclerotome is combined with the rostral half of the next sclerotome. To elucidate the relationship between resegmentation and rostro-caudal patterning of somite, we used the Uncx4.1-LacZ transgene to characterize the resegmentation process. Our observations suggested that in the thoracic and lumbar vertebrae, the Uncx4.1-expressing caudal sclerotome gave rise to the intervertebral disc (IVD) and rostral portion of the vertebral body (VB). In the cervical vertebrae, the Uncx4.1-expressing caudal sclerotome appeared to contribute to the IVD and both caudal and rostral ends of the VB. This finding suggests that the rostro-caudal gene expression boundary does not necessarily coincide with the resegmentation boundary. This conclusion was supported by analyses of Mesp2 KO and Ripply1/2 double KO embryos lacking rostral and caudal properties, respectively. Resegmentation was not observed in Mesp2 KO embryos, but both the IVD and whole VB were formed from the caudalized sclerotome. Expression analysis of IVD marker genes including Pax1 in the wild-type, Mesp2 KO, and Ripply1/2 DKO embryos also supported the idea that a metameric pattern of IVD/VB is generated independently of Mesp2/Ripply-mediated rostro-caudal patterning of somite. However, in the lumbar region, IVD differentiation appeared to be stimulated by the caudal property and suppressed by the rostral property. Therefore, we propose that rostro-caudal patterning of somites is not a prerequisite for metameric patterning of the IVD and VB, but instead required to stimulate IVD differentiation in the caudal half of the sclerotome.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Tipificación del Cuerpo , Disco Intervertebral/embriología , Proteínas Represoras/fisiología , Somitos/embriología , Columna Vertebral/embriología , Animales , Galactósidos/análisis , Proteínas de Homeodominio/fisiología , Indoles/análisis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción Paired Box/fisiología , Factor de Crecimiento Transformador beta/fisiología
11.
Development ; 135(21): 3511-9, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18849530

RESUMEN

The T-box transcription factor Tbx6 controls the expression of Mesp2, which encodes a basic helix-loop-helix transcription factor that has crucial roles in somitogenesis. In cultured cells, Tbx6 binding to the Mesp2 enhancer region is essential for the activation of Mesp2 by Notch signaling. However, it is not known whether this binding is required in vivo. Here we report that an Mesp2 enhancer knockout mouse bearing mutations in two crucial Tbx6 binding sites does not express Mesp2 in the presomitic mesoderm. This absence leads to impaired skeletal segmentation identical to that reported for Mesp2-null mice, indicating that these Tbx6 binding sites are indispensable for Mesp2 expression. T-box binding to the consensus sequences in the Mesp2 upstream region was confirmed by chromatin immunoprecipitation assays. Further enhancer analyses indicated that the number and spatial organization of the T-box binding sites are critical for initiating Mesp2 transcription via Notch signaling. We also generated a knock-in mouse in which the endogenous Mesp2 enhancer was replaced by the core enhancer of medaka mespb, an ortholog of mouse Mesp2. The homozygous enhancer knock-in mouse was viable and showed normal skeletal segmentation, indicating that the medaka mespb enhancer functionally replaced the mouse Mesp2 enhancer. These results demonstrate that there is significant evolutionary conservation of Mesp regulatory mechanisms between fish and mice.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Secuencia Conservada , Elementos de Facilitación Genéticos , Evolución Molecular , Mesodermo/metabolismo , Somitos/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Mesodermo/embriología , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/genética , Especificidad de Órganos , Oryzias/genética , Receptores Notch/metabolismo , Transducción de Señal , Proteínas de Dominio T Box , Transcripción Genética
12.
Dev Biol ; 304(2): 593-603, 2007 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17306789

RESUMEN

Mesp1 and Mesp2 are homologous transcription factors that are co-expressed in the anterior presomitic mesoderm (PSM) during mouse somitogenesis. The loss of Mesp2 alone in our conventional Mesp2-null mice results in the complete disruption of somitogenesis, including segment border formation, rostro-caudal patterning and epithelialization of somitic mesoderm. This has led us to interpret that Mesp2 is solely responsible for somitogenesis. Our novel Mesp2 knock-in alleles, however, exhibit a remarkable upregulation of Mesp1. Removal of the pgk-neo cassette from the new allele leads to localization of Mesp1 and several gene expression, and somite formation in the tail region. Moreover, a reduction in the gene dosage of Mesp1 by one copy disrupts somite formation, confirming the involvement of Mesp1 in the rescue events. Furthermore, we find that activated Notch1 knock-in significantly upregulates Mesp1 expression, even in the absence of a Notch signal mediator, Psen1. This indicates that the Psen1-independent effects of activated Notch1 are mostly attributable to the induction of Mesp1. However, we have also confirmed that Mesp2 enhances the expression of the Notch1 receptor in the anterior PSM. The activation and subsequent suppression of Notch signaling might thus be a crucial event for both stripe pattern formation and boundary formation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Receptor Notch1/fisiología , Somitos/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Tipificación del Cuerpo , Embrión de Mamíferos/metabolismo , Dosificación de Gen , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Mutantes , Presenilina-1/fisiología , Receptor Notch1/genética , Transducción de Señal , Regulación hacia Arriba
13.
Cell Res ; 16(4): 337-46, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16617329

RESUMEN

The homozygous inv (inversion of embryonic turning) mouse mutant shows situs inversus and polycystic kidney disease, both of which result from the lack of the inv gene. Previously, we suggested that inv may be important for the left-right axis formation, not only in mice but also in Xenopus, and that calmodulin regulates this inv protein function. Here, we isolated and characterized two Xenopus laevis homologs (Xinv-1 and Xinv-2) of the mouse inv gene, and performed functional analysis of the conserved IQ motifs that interact with calmodulin. Xinv-1 expresses early in development in the same manner as mouse inv does. Unexpectedly, a full-length Xenopus inv mRNA did not randomize cardiac orientation when injected into Xenopus embryos, which is different from mouse inv mRNA. Contrary to mouse inv mRNA, Xenopus inv mRNA with mutated IQ randomized cardiac orientation. The present study indicates that calmodulin binding sites (IQ motifs) are crucial in controlling the biological activity of both mouse and Xenopus inv proteins. Although mouse and Xenopus inv genes have a quite similar structure, the interaction with calmodulin and IQ motifs of Xenopus inv and mouse inv proteins may regulate their function in different ways.


Asunto(s)
Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Factores de Transcripción/genética , Xenopus laevis/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Repetición de Anquirina , Tipificación del Cuerpo/genética , ADN Complementario/aislamiento & purificación , Corazón/embriología , Ratones , Datos de Secuencia Molecular , Estructura Terciaria de Proteína/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Xenopus laevis/embriología
14.
Dev Growth Differ ; 48(3): 153-68, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16573733

RESUMEN

Somitogenesis is a critical step during the formation of metameric structures in vertebrates. Recent studies in mouse, chick, zebrafish and Xenopus have revealed that several factors, such as T-box genes, Notch/Delta, Wnt, retinoic acid and FGF signaling, are involved in the specification of nascent somites. By interacting with these pathways, the Mesp2-like bHLH transcription factors are transiently expressed in the anterior presomitic mesoderm and play a crucial role in somite formation. The regulatory mechanisms of Mesp2 and its related genes during somitogenesis have been studied in mouse and Xenopus. However, the precise mechanism that regulates the transcriptional activity of Mesp2 has yet to be determined. In our current report, we identify the essential enhancer element of medaka mesp-b, an orthologue of mouse Mesp2, using transgenic techniques and embryo manipulation. Our results demonstrate that a region of approximately 2.8 kb, upstream of the mesp-b gene, is responsible for both the initiation and anterior localization of mesp-b transcription within a somite primordium. Furthermore, putative motifs for both T-box transcription factors and Notch/Delta signaling are present in this enhancer region and are essential for activity.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Elementos de Facilitación Genéticos/fisiología , Oryzias/genética , Somitos/fisiología , Transgenes/genética , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/aislamiento & purificación , Sitios de Unión , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Transferencia de Gen , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Oryzias/embriología , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Tretinoina/metabolismo , Pez Cebra
15.
Proc Natl Acad Sci U S A ; 103(10): 3651-6, 2006 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-16505380

RESUMEN

Mesp2 is a transcription factor that plays fundamental roles in somitogenesis, and its expression is strictly restricted to the anterior presomitic mesoderm just before segment border formation. The transcriptional on-off cycle is linked to the segmentation clock. In our current study, we show that a T-box transcription factor, Tbx6, is essential for Mesp2 expression. Tbx6 directly binds to the Mesp2 gene upstream region and mediates Notch signaling, and subsequent Mesp2 transcription, in the anterior presomitic mesoderm. Our data therefore reveal that a mechanism, via Tbx6-dependent Notch signaling, acts on the transcriptional regulation of Mesp2. This finding uncovers an additional component of the interacting network of various signaling pathways that are involved in somitogenesis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Receptores Notch/metabolismo , Somitos/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sitios de Unión/genética , ADN/genética , Elementos de Facilitación Genéticos , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Técnicas In Vitro , Operón Lac , Ratones , Ratones Transgénicos , Modelos Biológicos , Datos de Secuencia Molecular , Embarazo , Transducción de Señal , Proteínas de Dominio T Box , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
16.
J Biol Chem ; 277(37): 34287-94, 2002 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-12097332

RESUMEN

Activation of caspase-12 from procaspase-12 is specifically induced by insult to the endoplasmic reticulum (ER) (Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A., and Yuan, J. (2000) Nature 403, 98-103), yet the functional consequences of caspase-12 activation have been unclear. We have shown that recombinant caspase-12 specifically cleaves and activates procaspase-9 in cytosolic extracts. The activated caspase-9 catalyzes cleavage of procaspase-3, which is inhibitable by a caspase-9-specific inhibitor. Although cytochrome c released from mitochondria has been believed to be required for caspase-9 activation during apoptosis (Zou, H., Henzel, W. J., Liu, X., Lutschg, A., and Wang, X. (1997) Cell 90, 405-413, Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., and Wang, X. (1997) Cell 91, 479-489), caspase-9 as well as caspase-12 and -3 are activated in cytochrome c-free cytosols in murine myoblast cells under ER stress. These results suggest that caspase-12 can activate caspase-9 without involvement of cytochrome c. To examine the role of caspase-12 in the activation of downstream caspases, we used a caspase-12-binding protein, which we identified in a yeast two-hybrid screen, for regulation of caspase-12 activation. The binding protein protects procaspase-12 from processing in vitro. Stable expression of the binding protein renders procaspase-12 insensitive to ER stress, thereby suppressing apoptosis and the activation of caspase-9 and -3. These data suggest that procaspase-9 is a substrate of caspase-12 and that ER stress triggers a specific cascade involving caspase-12, -9, and -3 in a cytochrome c-independent manner.


Asunto(s)
Apoptosis/fisiología , Caspasas/metabolismo , Caspasas/fisiología , Grupo Citocromo c/fisiología , Retículo Endoplásmico/enzimología , Animales , Antígenos de Neoplasias/metabolismo , Caspasa 12 , Caspasa 9 , Línea Celular , Activación Enzimática , Ratones , Proteínas de Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA