Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 677: 26-30, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37542772

RESUMEN

One of common characteristics of solid tumors is low O2 level, so-called hypoxia, which plays a critical role in chemoresistance. Epigenetic mechanism such as DNA methylation and histone modification is involved in cancer development and progression. There is ample evidence that epigenetic drugs reversed acquired chemoresistance in cancer cells under normal O2 level, normoxia. However, it remains unknown whether epigenetic drugs improve acquired chemoresistance under hypoxia. The aim of our study was to investigate whether epigenetic drugs can improve the chemoresistance induced under hypoxia in cancer cells. In murine melanoma B16-BL6 (B16) cells, the culture under hypoxia, 1%O2 caused the elevated expression of hypoxia-inducible factor-1α (HIF-1α) and its target genes. The chemoresistance to 7-ethyl-10-hydroxycamptothecin (SN-38, the active metabolite of irinotecan) was also acquired under hypoxia in B16 cells. In addition, as epigenetic mechanisms, the protein expression of the enhancer of zeste homolog 2 (EZH2), histone methyltransferase and its target histone H3 trimethylation at lysine 27 (H3K27Me3) level increased under hypoxia. The induction of H3K27Me3 under hypoxia was suppressed by EZH2 siRNA and 3-deazaneplanocin A (DZNep), an EZH2 inhibitor. Furthermore, both EZH2 siRNA and DZNep significantly reduced the cell viability after SN-38 treatment and improved the chemoresistance to SN-38 under hypoxia. These results indicated that the chemoresistance to SN-38 under hypoxia would arise from epigenetic mechanism, H3K27Me3 elevation due to EZH2 induction. In conclusion, a histone methyltransferase EZH2 inhibitor, DZNep was capable of tackling acquired chemoresistance via the suppression of histone methylation induced under hypoxic tumor microenvironment.


Asunto(s)
Histonas , Melanoma , Humanos , Animales , Ratones , Histonas/metabolismo , Histona Metiltransferasas/genética , Irinotecán , Resistencia a Antineoplásicos , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Inhibidores Enzimáticos/farmacología , Metilación de ADN , ARN Interferente Pequeño/metabolismo , Melanoma/genética , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA