Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
J Leukoc Biol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941443

RESUMEN

Itaconate is one of the most studied immunometabolites produced by myeloid cells during inflammatory response. It mediates a wide range of anti-inflammatory and immunoregulatory effects and plays a role in a number of pathological states, including autoimmunity and cancer. Itaconate and its derivatives are considered as potential therapeutic agents for treatment of inflammatory diseases. While immunoregulatory effects of itaconate have been extensively studied in vitro and using knock-out mouse models, less is known about how therapeutic administration of this metabolite regulates inflammatory response in vivo. Here, we investigate the immunoregulatory properties of exogenous administration of itaconate (ITA) and its derivative dimethyl itaconate (DI) in a mouse model of LPS-induced inflammation. The data show that administration of ITA or DI controls systemic production of multiple cytokines, including increased IL-10 production. However, only DI was able to suppress systemic production of IFNγ and IL-1ß. In contrast to in vitro data, administration of ITA or DI in vivo resulted in systemic upregulation of IL-6 in the blood. Electrophilic stress due to ITA or DI was not responsible for IL-6 upregulation. However, inhibition of SDH with dimethyl malonate (DM) also resulted in elevated systemic levels of IL-6 and IL-10. Taken together, our study reports a novel effect of exogenous itaconate and its derivative DI on the production of IL-6 in vivo, with important implications for the development of itaconate-based anti-inflammatory therapies.

2.
Hellenic J Cardiol ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844023

RESUMEN

OBJECTIVE: We aimed to examine biventricular remodeling and function after Ebstein anomaly (EbA) surgical correction using echocardiographic techniques, particularly, the relations between the biventricular changes and the EbA types. METHODS: From April 2015 to August 2022, 110 patients with EbA were included in this retrospective study based on the Carpentier classification. Echocardiography assessments during the preoperative, early, and mid-term postoperative periods were performed. RESULTS: The 54 patients with types A and B EbA were included in group 1, whereas the 56 patients with types C and D were in group 2. Seventy-eight patients underwent surgical correction of EbA. The median age at operation was 8.8 years. During the mid-term follow-up, only 9.1% of the patients had moderate or severe tricuspid regurgitation. Right ventricular (RV) systolic function worsened in group 2 at discharge (fractional area change: 27.6 ± 11.2 vs. 35.4 ± 11.5 [baseline], P < 0.05; global longitudinal strain: -10.8 ± 4.4 vs. -17.9 ± 4.7 [baseline], P = 0.0001). RV function slowly recovered at a mean of 12 months of follow-up. Regarding left ventricular (LV) and RV systolic function, no statistical difference was found between before and after surgery in group 1. CONCLUSION: A high success rate of surgical correction of EbA, with an encouraging durability of the valve, was noted. Biventricular systolic function was maintained fairly in most patients with types A and B postoperatively. A late increase in RV systolic function after an initial reduction and unchanged LV systolic function were observed in the patients with types C and D postoperatively.

3.
Immunology ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934051

RESUMEN

Maintaining intracellular redox balance is essential for the survival, antibody secretion, and mucosal immune homeostasis of immunoglobulin A (IgA) antibody-secreting cells (ASCs). However, the relationship between mitochondrial metabolic enzymes and the redox balance in ASCs has yet to be comprehensively studied. Our study unveils the pivotal role of mitochondrial enzyme PCK2 in regulating ASCs' redox balance and intestinal homeostasis. We discover that PCK2 loss, whether globally or in B cells, exacerbates dextran sodium sulphate (DSS)-induced colitis due to increased IgA ASC cell death and diminished antibody production. Mechanistically, the absence of PCK2 diverts glutamine into the TCA cycle, leading to heightened TCA flux and excessive mitochondrial reactive oxygen species (mtROS) production. In addition, PCK2 loss reduces glutamine availability for glutathione (GSH) synthesis, resulting in a decrease of total glutathione level. The elevated mtROS and reduced GSH expose ASCs to overwhelming oxidative stress, culminating in cell apoptosis. Crucially, we found that the mitochondria-targeted antioxidant Mitoquinone (Mito-Q) can mitigate the detrimental effects of PCK2 deficiency in IgA ASCs, thereby alleviating colitis in mice. Our findings highlight PCK2 as a key player in IgA ASC survival and provide a potential new target for colitis treatment.

5.
Cell Rep ; 43(6): 114300, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38829739

RESUMEN

The high infiltration of tumor-associated macrophages (TAMs) in the immunosuppressive tumor microenvironment prominently attenuates the efficacy of immune checkpoint blockade (ICB) therapies, yet the underlying mechanisms are not fully understood. Here, we investigate the metabolic profile of TAMs and identify S-2-hydroxyglutarate (S-2HG) as a potential immunometabolite that shapes macrophages into an antitumoral phenotype. Blockage of L-2-hydroxyglutarate dehydrogenase (L2HGDH)-mediated S-2HG catabolism in macrophages promotes tumor regression. Mechanistically, based on its structural similarity to α-ketoglutarate (α-KG), S-2HG has the potential to block the enzymatic activity of 2-oxoglutarate-dependent dioxygenases (2-OGDDs), consequently reshaping chromatin accessibility. Moreover, S-2HG-treated macrophages enhance CD8+ T cell-mediated antitumor activity and sensitivity to anti-PD-1 therapy. Overall, our study uncovers the role of blockage of L2HGDH-mediated S-2HG catabolism in orchestrating macrophage antitumoral polarization and, further, provides the potential of repolarizing macrophages by S-2HG to overcome resistance to anti-PD-1 therapy.


Asunto(s)
Glutaratos , Macrófagos , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/inmunología , Humanos , Glutaratos/metabolismo , Ratones Endogámicos C57BL , Línea Celular Tumoral , Microambiente Tumoral , Polaridad Celular/efectos de los fármacos , Oxidorreductasas de Alcohol/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Activación de Macrófagos/efectos de los fármacos , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/metabolismo , Femenino
6.
J Ethnopharmacol ; 333: 118497, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942156

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional medicinal formulation, Qifu-yin (QFY), has been widely prescribed for Alzheimer's disease (AD) treatment in China, yet the comprehensive mechanisms through which QFY mitigates AD pathology remain to be fully delineated. AIM OF THE STUDY: This study aimed to explore the therapeutic implications of QFY on the synaptic injury and oxidative stress in the hippocampus of APPswe/PS1dE9 (APP/PS1) mice, with a concerted effort to elucidate the molecular mechanisms related to synaptic preservation and memory improvement. MATERIALS AND METHODS: The components of QFY were identified by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The neuroprotective effects of QFY was evaluated using six-month-old male APP/PS1 mice. Subsequent to a 15 days of QFY regimen, spatial memory was assessed utilizing the Morris water maze (MWM) test. Amyloid-beta (Aß) aggregation was detected via immunostaining, while the quantification of Aß1-40 and Aß1-42 was achieved through enzyme-linked immunosorbent assay (ELISA). Transmission electron microscopy (TEM) was used to investigate the synaptic structure and mitochondrial morphology. Golgi staining was applied to examine dendritic spine density. Reactive oxygen species (ROS), 3-nitrotyrosine (3-NT) and 4-hydroxy-nonenal (4-HNE) assays were employed to assess oxidative stress. The expression profiles of Aß metabolism-associated enzymes and the Keap1/Nrf2/ARE signaling pathway were determined by Western blot. RESULTS: A total of 20 principal compounds in QFY were identified. QFY mitigated memory deficits of APP/PS1 mice, including reducing escape latency and search distance and increasing the time and distance spent in the target quadrant. In addition, QFY increased platform crossings of APP/PS1 mice in the probe trial of MWM tests. TEM analysis showed that QFY increased synapse number in the CA1 region of APP/PS1 mice. Further studies indicated that QFY elevated the expression levels of Post synaptic density protein 95 (PSD95) and synaptophysin, and mitigated the loss of dendritic spine density in the hippocampus of APP/PS1 mice. QFY has been shown to ameliorated the structural abnormalities of mitochondria, including mitochondrial dissolution and degradation, up-regulate ATP synthesis and membrane potential in the hippocampus of APP/PS1 mice. Moreover, QFY activated the Keap1/Nrf2/ARE signaling pathway in the hippocampus of APP/PS1 mice, which might contribute to the neuroprotective effects of QFY. CONCLUSION: QFY activates the Keap1/Nrf2/ARE signaling, and protects against synaptic and mitochondrial dysfunction in APP/PS1 mice, proposing a potential alternative therapeutic strategy for AD management.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Medicamentos Herbarios Chinos , Proteína 1 Asociada A ECH Tipo Kelch , Ratones Transgénicos , Factor 2 Relacionado con NF-E2 , Fármacos Neuroprotectores , Estrés Oxidativo , Transducción de Señal , Animales , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Estrés Oxidativo/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ratones , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Fármacos Neuroprotectores/farmacología , Medicamentos Herbarios Chinos/farmacología , Presenilina-1/genética , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Elementos de Respuesta Antioxidante/efectos de los fármacos , Modelos Animales de Enfermedad
7.
Sci Total Environ ; 946: 174127, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908574

RESUMEN

Black carbon (BC), as a critical light-absorbing constituent within aerosols, exerts profound effects on atmospheric radiation balance, climate, air quality and human health, etc. And it is also a long-standing focus in rapidly developing megacities. So, this study primarily focuses on investigating the variation characteristics and underlying causes of BC in Chongqing (31,914,300 population), which is one of the municipalities directly under the central government of China, serving as a pivotal economic hub in southwest China. Utilizing MERRA-2 reanalysis data, we examined the long-term changes of atmospheric BC over Chongqing 20 years (from 2002 to 2021). Moreover, BC mass concentration observations were conducted using an Aethalometer (AE-33) from March 15 to June 14, 2021 in Liangping District, Chongqing. The statistical analysis over the last 20 years reveals an annual mean BC concentration in Chongqing of 3.42 ± 0.20 µg/m3, exhibiting growth from 2002 to 2008, followed by a decline from 2008 to 2021. Monthly concentration displays a "U-shaped" trend, with the lowest values occurring in summer and the highest in winter. Due to topographical and meteorological influences, local emissions primarily contribute to BC pollution, characterized by a spatial distribution pattern of high in the west and low in the east. Ground observation indicates a distinct dual-peaked pattern in the diurnal variation of BC, with peak concentrations aligning with periods of high traffic emissions. The variation in BC is significantly influenced by meteorological conditions (wind, temperature, atmospheric boundary layer) and local pollution sources (predominantly traffic). Furthermore, extreme events analysis suggests that local emissions and regional transport (with higher contributions from Chongqing and the Sichuan Basin) predominantly contributed to BC pollution. This study effectively makes up for the deficiency in analyzing the distribution and sources of BC pollution in Chongqing, providing valuable scientific insights for the atmospheric environment of megacities.

8.
Cell Mol Life Sci ; 81(1): 229, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780787

RESUMEN

RNA modifications are essential for the establishment of cellular identity. Although increasing evidence indicates that RNA modifications regulate the innate immune response, their role in monocyte-to-macrophage differentiation and polarisation is unclear. While m6A has been widely studied, other RNA modifications, including 5 hmC, remain poorly characterised. We profiled m6A and 5 hmC epitranscriptomes, transcriptomes, translatomes and proteomes of monocytes and macrophages at rest and pro- and anti-inflammatory states. Transcriptome-wide mapping of m6A and 5 hmC reveals enrichment of m6A and/or 5 hmC on specific categories of transcripts essential for macrophage differentiation. Our analyses indicate that m6A and 5 hmC modifications are present in transcripts with critical functions in pro- and anti-inflammatory macrophages. Notably, we also discover the co-occurrence of m6A and 5 hmC on alternatively-spliced isoforms and/or opposing ends of the untranslated regions (UTR) of mRNAs with key roles in macrophage biology. In specific examples, RNA 5 hmC controls the decay of transcripts independently of m6A. This study provides (i) a comprehensive dataset to interrogate the role of RNA modifications in a plastic system (ii) a resource for exploring different layers of gene expression regulation in the context of human monocyte-to-macrophage differentiation and polarisation, (iii) new insights into RNA modifications as central regulators of effector cells in innate immunity.


Asunto(s)
Diferenciación Celular , Macrófagos , Monocitos , Transcriptoma , Macrófagos/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Diferenciación Celular/genética , Humanos , Monocitos/metabolismo , Monocitos/citología , Regulación de la Expresión Génica , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Polaridad Celular/genética , ARN/genética , ARN/metabolismo , Adenosina/metabolismo
9.
J Sci Food Agric ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38785267

RESUMEN

BACKGROUND: Qingzhuan dark tea polysaccharides (QDTP) have been complexed with Zinc (Zn) to form the Qingzhuan dark tea polysaccharides-Zinc (QDTP-Zn) complex. The present study investigated the protective effects of QDTP-Zn on ulcerative colitis (UC) in mice. The UC mouse model was induced using dextran sodium sulfate (DSS), followed by oral administration of QDTP-Zn (0.2 and 0.4 g kg-1 day-1). RESULTS: QDTP-Zn demonstrated alleviation of UC symptoms in mice, as evidenced by a decrease in disease activity index scores. QDTP-Zn also regulated colon tissue injury by upregulating ZO-1 and occludin protein expression, at the same time as downregulating tumor necrosis factor-α and interleukin-6ß levels. Furthermore, QDTP-Zn induced significant alterations in the abundance of bacteroidetes and firmicutes and notably increased levels of short-chain fatty acids (SCFAs), particularly acetic acid, propionic acid, and butyric acid. CONCLUSION: In summary, QDTP-Zn exhibits therapeutic potential in alleviating enteritis by fortifying the colonic mucosal barrier, mitigating inflammation and modulating intestinal microbiota and SCFAs levels. Thus, QDTP-Zn holds promise as a functional food for both the prevention and treatment of UC. © 2024 Society of Chemical Industry.

10.
Cell Chem Biol ; 31(5): 830-832, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759615

RESUMEN

The rise of immunotherapy and mRNA vaccines has underscored the power of modulating the immune system for a desired response. In this Voices piece, the Cell Chemical Biology editors ask researchers from a range of backgrounds: what are some major challenges and opportunities facing the field in coming years?


Asunto(s)
Sistema Inmunológico , Inmunoterapia , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Vacunas de ARNm/inmunología
11.
Proc Natl Acad Sci U S A ; 121(23): e2318843121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805277

RESUMEN

The development and performance of two mass spectrometry (MS) workflows for the intraoperative diagnosis of isocitrate dehydrogenase (IDH) mutations in glioma is implemented by independent teams at Mayo Clinic, Jacksonville, and Huashan Hospital, Shanghai. The infiltrative nature of gliomas makes rapid diagnosis necessary to guide the extent of surgical resection of central nervous system (CNS) tumors. The combination of tissue biopsy and MS analysis used here satisfies this requirement. The key feature of both described methods is the use of tandem MS to measure the oncometabolite 2-hydroxyglutarate (2HG) relative to endogenous glutamate (Glu) to characterize the presence of mutant tumor. The experiments i) provide IDH mutation status for individual patients and ii) demonstrate a strong correlation of 2HG signals with tumor infiltration. The measured ratio of 2HG to Glu correlates with IDH-mutant (IDH-mut) glioma (P < 0.0001) in the tumor core data of both teams. Despite using different ionization methods and different mass spectrometers, comparable performance in determining IDH mutations from core tumor biopsies was achieved with sensitivities, specificities, and accuracies all at 100%. None of the 31 patients at Mayo Clinic or the 74 patients at Huashan Hospital were misclassified when analyzing tumor core biopsies. Robustness of the methodology was evaluated by postoperative re-examination of samples. Both teams noted the presence of high concentrations of 2HG at surgical margins, supporting future use of intraoperative MS to monitor for clean surgical margins. The power of MS diagnostics is shown in resolving contradictory clinical features, e.g., in distinguishing gliosis from IDH-mut glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Mutación , Glioma/genética , Glioma/cirugía , Glioma/patología , Isocitrato Deshidrogenasa/genética , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Espectrometría de Masas en Tándem/métodos , Glutaratos/metabolismo , Espectrometría de Masas/métodos , Ácido Glutámico/metabolismo , Ácido Glutámico/genética
12.
PLoS One ; 19(5): e0303150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728304

RESUMEN

The Ang-(1-7)/MasR axis is critically involved in treating several diseases; For example, Ang-(1-7) improves inflammatory response and neurological function after traumatic brain injury and inhibits post-inflammatory hypothermia. However, its function in traumatic brain injury (TBI) combined with seawater immersion hypothermia remains unclear. Here, we used a mice model of hypothermic TBI and a BV2 cell model of hypothermic inflammation to investigate whether the Ang-(1-7)/MasR axis is involved in ameliorating hypothermic TBI. Quantitative reverse transcription PCR, western blotting assay, and immunofluorescence assay were performed to confirm microglia polarization and cytokine regulation. Hematoxylin-eosin staining, Nissl staining, and immunohistochemical assay were conducted to assess the extent of hypothermic TBI-induced damage and the ameliorative effect of Ang-(1-7) in mice. An open field experiment and neurological function scoring with two approaches were used to assess the degree of recovery and prognosis in mice. After hypothermic TBI establishment in BV2 cells, the Ang-(1-7)/MasR axis induced phenotypic transformation of microglia from M1 to M2, inhibited IL-6 and IL-1ß release, and upregulated IL-4 and IL-10 levels. After hypothermic TBI development in mice, intraperitoneally administered Ang-(1-7) attenuated histological damage and promoted neurological recovery. These findings suggest that hypothermia exacerbates TBI-induced damage and that the Ang-(1-7)/MasR axis can ameliorate hypothermic TBI and directly affect prognosis.


Asunto(s)
Angiotensina I , Lesiones Traumáticas del Encéfalo , Microglía , Enfermedades Neuroinflamatorias , Fragmentos de Péptidos , Animales , Microglía/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Ratones , Masculino , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G/metabolismo , Fenotipo , Modelos Animales de Enfermedad , Hipotermia Inducida , Citocinas/metabolismo , Línea Celular , Hipotermia/metabolismo , Inflamación/patología , Inflamación/metabolismo
13.
J Exp Med ; 221(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805014

RESUMEN

Phenotypic plasticity is a rising cancer hallmark, and lung adeno-to-squamous transition (AST) triggered by LKB1 inactivation is significantly associated with drug resistance. Mechanistic insights into AST are urgently needed to identify therapeutic vulnerability in LKB1-deficient lung cancer. Here, we find that ten-eleven translocation (TET)-mediated DNA demethylation is elevated during AST in KrasLSL-G12D/+; Lkb1L/L (KL) mice, and knockout of individual Tet genes reveals that Tet2 is required for squamous transition. TET2 promotes neutrophil infiltration through STAT3-mediated CXCL5 expression. Targeting the STAT3-CXCL5 nexus effectively inhibits squamous transition through reducing neutrophil infiltration. Interestingly, tumor-infiltrating neutrophils are laden with triglycerides and can transfer the lipid to tumor cells to promote cell proliferation and squamous transition. Pharmacological inhibition of macropinocytosis dramatically inhibits neutrophil-to-cancer cell lipid transfer and blocks squamous transition. These data uncover an epigenetic mechanism orchestrating phenotypic plasticity through regulating immune microenvironment and metabolic communication, and identify therapeutic strategies to inhibit AST.


Asunto(s)
Quimiocina CXCL5 , Proteínas de Unión al ADN , Dioxigenasas , Neoplasias Pulmonares , Neutrófilos , Proteínas Proto-Oncogénicas , Factor de Transcripción STAT3 , Animales , Neutrófilos/metabolismo , Factor de Transcripción STAT3/metabolismo , Ratones , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Quimiocina CXCL5/metabolismo , Quimiocina CXCL5/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Humanos , Dioxigenasas/metabolismo , Pinocitosis , Línea Celular Tumoral , Infiltración Neutrófila , Ratones Noqueados , Ratones Endogámicos C57BL , Metabolismo de los Lípidos
14.
J Inflamm Res ; 17: 2147-2158, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617382

RESUMEN

Purpose: The activation of the inflammatory response is regarded as a pivotal factor in the pathogenesis of TBI. Central nervous system infection often leads to the exacerbation of neuroinflammation following TBI, primarily caused by Gram-negative bacteria. This study aims to elucidate the effects of the novel anti-inflammatory drug TAK-3 on LPS-induced neuroinflammation in TBI rats. Methods: In conjunction with the rat controlled cortical impact model, we administered local injections of Lipopolysaccharide to the impact site. Subsequently, interventions were implemented through intraperitoneal injections of TAK-3 and NF-κB activitor2 to modulate the TLR4/NF-κB axis The impact of LPS on neurological function was assessed using mNSS, open field test, and brain water content measurement. Inflammatory markers, including TNF-α, IL-1ß, IL-6 and IL-10 were assessed to evaluate the condition of neuritis by Elisa. The activation of the TLR-4/NF-κB signaling pathway was detected by immunofluorescence staining and Western blot to assess the anti-inflammatory effects of TAK-3. Results: The administration of LPS exacerbated neurological damage in rats with TBI, as evidenced by a reduction in motor activity and an increase in anxiety-like behavior. Furthermore, LPS induced disruption of the blood-brain barrier integrity and facilitated the development of brain edema. The activation of microglia and astrocytes by LPS at the cellular and molecular levels has been demonstrated to induce a significant upregulation of neuroinflammatory factors. The injection of TAK-3 attenuated the neuroinflammatory response induced by LPS. Conclusion: The present study highlights the exacerbating effects of LPS on neuroinflammation in TBI through activation of the TLR-4/NF-κB signaling pathway. TAK-3 can modulate the activity of this signaling axis, thereby attenuating neuroinflammation and ultimately reducing brain tissue damage.

15.
Biomed Pharmacother ; 174: 116582, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642504

RESUMEN

The aim of this study was to investigate whether the therapeutic effect of theabrownin extracted from Qingzhuan tea (QTB) on metabolic dysfunction-associated steatosis liver disease (MASLD) is related to the regulation of intestinal microbiota and its metabolite short-chain fatty acids (SCFAs). Mice were divided into four groups and received normal diet (ND), high-fat diet (HFD) and HFD+QTB (180, 360 mg/kg) for 8 weeks. The results showed that QTB significantly reduced the body weight of HFD mice, ameliorated liver lipid and dyslipidemia, and increased the level of intestinal SCFAs in HFD mice. The results of 16 S rRNA showed that the relative abundance of Bacteroides, Blautia and Lachnoclostridium and their main metabolites acetate and propionate were significantly increased after QTB intervention. The relative abundance of Colidextribacter, Faecalibaculum and Lactobacillus was significantly reduced. QTB can also significantly up-regulate the expression of ATGL, PPARα, FFAR2 and FFAR3, and inhibit the expression of LXRα, SREBP-1c, FAS and HMGCR genes. This makes it possible to act as a prebiotic to prevent MASLD.


Asunto(s)
Catequina/análogos & derivados , Dieta Alta en Grasa , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Masculino , Té/química , Ratones , Ácidos Grasos Volátiles/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Dislipidemias/tratamiento farmacológico , Dislipidemias/prevención & control , Hígado Graso/prevención & control , Hígado Graso/tratamiento farmacológico
16.
Nat Commun ; 15(1): 2287, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480701

RESUMEN

CDK4/6 inhibitors (CDK4/6i) have improved survival of patients with estrogen receptor-positive (ER+) breast cancer. However, patients treated with CDK4/6i eventually develop drug resistance and progress. RB1 loss-of-function alterations confer resistance to CDK4/6i, but the optimal therapy for these patients is unclear. Through a genome-wide CRISPR screen, we identify protein arginine methyltransferase 5 (PRMT5) as a molecular vulnerability in ER+/RB1-knockout breast cancer cells. Inhibition of PRMT5 blocks the G1-to-S transition in the cell cycle independent of RB, leading to growth arrest in RB1-knockout cells. Proteomics analysis uncovers fused in sarcoma (FUS) as a downstream effector of PRMT5. Inhibition of PRMT5 results in dissociation of FUS from RNA polymerase II, leading to hyperphosphorylation of serine 2 in RNA polymerase II, intron retention, and subsequent downregulation of proteins involved in DNA synthesis. Furthermore, treatment with the PRMT5 inhibitor pemrametostat and a selective ER degrader fulvestrant synergistically inhibits growth of ER+/RB-deficient cell-derived and patient-derived xenografts. These findings highlight dual ER and PRMT5 blockade as a potential therapeutic strategy to overcome resistance to CDK4/6i in ER+/RB-deficient breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , ARN Polimerasa II , Quinasa 4 Dependiente de la Ciclina/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Resistencia a Antineoplásicos/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo
17.
J Biochem Mol Toxicol ; 38(3): e23671, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38454809

RESUMEN

Obesity is a major cause of nonalcohol fatty liver disease (NAFLD), which is characterized by hepatic fibrosis, lipotoxicity, inflammation, and apoptosis. Previous studies have shown that an imbalance in the autonomic nervous system is closely related to the pathogenesis of NAFLD. In this study, we investigated the effects of pyridostigmine (PYR), a cholinesterase (AChE) inhibitor, on HFD-induced liver injury and explored the potential mechanisms involving mitochondrial damage and oxidative stress. A murine model of HFD-induced obesity was established using the C57BL/6 mice, and PYR (3 mg/kg/d) or placebo was administered for 20 weeks. PYR reduced the body weight and liver weight of the HFD-fed mice. Additionally, the serum levels of IL-6, TNF-α, cholesterol, and triglyceride were significantly lower in the PYR-treated versus the untreated mice, corresponding to a decrease in hepatic fibrosis, lipid accumulation, and apoptosis in the former. Furthermore, the mitochondrial morphology improved significantly in the PYR-treated group. Consistently, PYR upregulated ATP production and the mRNA level of the mitochondrial dynamic factors OPA1, Drp1 and Fis1, and the mitochondrial unfolded protein response (UPRmt) factors LONP1 and HSP60. Moreover, PYR treatment activated the Keap1/Nrf2 pathway and upregulated HO-1 and NQO-1, which mitigated oxidative injury as indicated by decreased 8-OHDG, MDA and H2 O2 levels, and increased SOD activity. Finally, PYR elevated acetylcholine (ACh) levels by inhibiting AChE, and upregulated the α7nAChR and M3AChR proteins in the HFD-fed mice. PYR alleviated obesity-induced hepatic injury in mice by mitigating mitochondrial damage and oxidative stress via α7nAChR and M3AChR.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Bromuro de Piridostigmina/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/complicaciones , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Cirrosis Hepática/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Dieta , Dieta Alta en Grasa/efectos adversos
18.
Photodiagnosis Photodyn Ther ; 46: 104032, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431025

RESUMEN

Two cases of acquired port-wine stain (APWS) at lower extremity were treated with hematoporphyrin monomethyl ether (HMME) and 532 nm LED green light-mediated photodynamic therapy (HMME-PDT). No serious adverse reactions were observed during or post-treatment period. Five-month follow-up showed significant reduction of red patches after a single HMME-PDT treatment in both cases.


Asunto(s)
Hematoporfirinas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Mancha Vino de Oporto , Hematoporfirinas/uso terapéutico , Humanos , Fotoquimioterapia/métodos , Mancha Vino de Oporto/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico , Masculino , Femenino , Adulto , Extremidad Inferior
19.
Sci Transl Med ; 16(739): eadg5553, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507470

RESUMEN

Glioblastoma, the most lethal primary brain tumor, harbors glioma stem cells (GSCs) that not only initiate and maintain malignant phenotypes but also enhance therapeutic resistance. Although frequently mutated in glioblastomas, the function and regulation of PTEN in PTEN-intact GSCs are unknown. Here, we found that PTEN directly interacted with MMS19 and competitively disrupted MMS19-based cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) machinery in differentiated glioma cells. PTEN was specifically succinated at cysteine (C) 211 in GSCs compared with matched differentiated glioma cells. Isotope tracing coupled with mass spectrometry analysis confirmed that fumarate, generated by adenylosuccinate lyase (ADSL) in the de novo purine synthesis pathway that is highly activated in GSCs, promoted PTEN C211 succination. This modification abrogated the interaction between PTEN and MMS19, reactivating the CIA machinery pathway in GSCs. Functionally, inhibiting PTEN C211 succination by reexpressing a PTEN C211S mutant, depleting ADSL by shRNAs, or consuming fumarate by the US Food and Drug Administration-approved prescription drug N-acetylcysteine (NAC) impaired GSC maintenance. Reexpressing PTEN C211S or treating with NAC sensitized GSC-derived brain tumors to temozolomide and irradiation, the standard-of-care treatments for patients with glioblastoma, by slowing CIA machinery-mediated DNA damage repair. These findings reveal an immediately practicable strategy to target GSCs to treat glioblastoma by combination therapy with repurposed NAC.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/tratamiento farmacológico , Hierro/metabolismo , Glioma/tratamiento farmacológico , Neoplasias Encefálicas/tratamiento farmacológico , Células Madre Neoplásicas/patología , Azufre/metabolismo , Azufre/uso terapéutico , Fumaratos , Línea Celular Tumoral , Fosfohidrolasa PTEN/metabolismo
20.
Trends Endocrinol Metab ; 35(7): 586-606, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38448252

RESUMEN

Immune cells undergo rapid and extensive metabolic changes during inflammation. In addition to contributing to energetic and biosynthetic demands, metabolites can also function as signaling molecules. Itaconate (ITA) rapidly accumulates to high levels in myeloid cells under infectious and sterile inflammatory conditions. This metabolite binds to and regulates the function of diverse proteins intracellularly to influence metabolism, oxidative response, epigenetic modification, and gene expression and to signal extracellularly through binding the G protein-coupled receptor (GPCR). Administration of ITA protects against inflammatory diseases and blockade of ITA production enhances antitumor immunity in preclinical models. In this article, we review ITA metabolism and its regulation, discuss its target proteins and mechanisms, and conjecture a rationale for developing ITA-based therapeutics to treat inflammatory diseases and cancer.


Asunto(s)
Inflamación , Succinatos , Humanos , Inflamación/metabolismo , Animales , Succinatos/metabolismo , Transducción de Señal , Neoplasias/metabolismo , Neoplasias/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA