Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 15(9): 1893-1903, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38613492

RESUMEN

Depression is a common mental disorder. In recent years, more and more attention has been paid to depression and its etiology and pathogenesis. This review aims to explore the neuroprotective and antidepressant effects of hop components. By establishing an in vitro cell damage model using PC12 cells induced by corticosterone (CORT) and an in vivo depression model through the intracranial injection of lipopolysaccharide (LPS) in mice, hop ethyl acetate extract (HEA) was used to study the protective effect and mechanism of HEA on neuronal cells in vitro and the antidepression effect and mechanism in vivo. The results showed that HEA increased the survival and decreased the rate of lactate dehydrogenase (LDH) release, apoptosis, and the ROS and NO content of CORT-induced PC12 cells. HEA alleviated depressive-like behavior, neuroinflammation, reduction of norepinephrine, and dendritic spines induced by intracerebroventricular injection of LPS in mice and increases the expression levels of BDNF, SNAP 25, and TrkB proteins without any significant side effects or toxicity. Hops demonstrated significant comprehensive utilization value, and this work provided an experimental basis for the role of hops in the treatment of depression and provided a basis for the development of HEA for antidepressant drugs or dietary therapy products.


Asunto(s)
Acetatos , Antidepresivos , Corticosterona , Depresión , Humulus , Fármacos Neuroprotectores , Extractos Vegetales , Animales , Células PC12 , Ratones , Depresión/tratamiento farmacológico , Extractos Vegetales/farmacología , Acetatos/farmacología , Antidepresivos/farmacología , Ratas , Fármacos Neuroprotectores/farmacología , Masculino , Humulus/química , Lipopolisacáridos/farmacología , Modelos Animales de Enfermedad , Conducta Animal/efectos de los fármacos
2.
Front Cell Dev Biol ; 11: 1207748, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465011

RESUMEN

Background: The transfer of mitochondria from healthy mesenchymal stem cells (MSCs) to injured MSCs has been shown to have potential therapeutic benefits for neural cell post-ischemic stroke. Specifically, functional mitochondria can perform their normal functions after being internalized by stressed cells, leading to host cell survival. However, while this approach shows promise, there is still a lack of understanding regarding which neural cells can internalize functional mitochondria and the regulatory mechanisms involved. To address this gap, we investigated the ability of different neural cells to internalize exogenous functional mitochondria extracted from MSCs. Methods: Functional mitochondria (F-Mito) isolated from umbilical cord derived-MSCs (UCMSCs) were labeled with lentivirus of HBLV-mito-dsred-Null-PURO vector. The ability of stressed cells to internalize F-Mito was analyzed using a mouse (C57BL/6 J) middle cerebral artery occlusion (MCAO) model and an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model. The cell viability was measured by CCK-8 kit. Time-course of intracellular ROS levels in stressed cells were analyzed by DCFH-DA staining after OGD/R and F-Mito treatment. MitoSOX, Mitotracker and WGA labeling were used to assess the relationship between ROS levels and the uptake of F-Mito at the single-cell level. Pharmacological modulation of ROS was performed using acetylcysteine (ROS inhibitor). Results: Our findings demonstrate that neurons and endothelial cells are more effective at internalizing mitochondria than astrocytes, both in vitro and in vivo, using an ischemia-reperfusion model. Additionally, internalized F-Mito decreases host cell reactive oxygen species (ROS) levels and rescues survival. Importantly, we found that the ROS response in stressed cells after ischemia is a crucial determinant in positively mediating the internalization of F-Mito by host cells, and inhibiting the generation of ROS chemicals in host cells may decrease the internalization of F-Mito. These results offer insight into how exogenous mitochondria rescue neural cells via ROS response in an ischemic stroke model. Overall, our study provides solid evidence for the translational application of MSC-derived mitochondria as a promising treatment for ischemic stroke.

3.
Stroke ; 54(8): 2114-2125, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37377010

RESUMEN

BACKGROUND: The ubiquitin-proteasome system (UPS) and autophagy are 2 major protein degradation pathways in eukaryotic cells. We previously identified a switch from UPS to autophagy with changes in BAG3 (B-cell lymphoma 2-associated-athanogene 3) expression after cerebral ischemia in mice. BAG3 is an antiapoptotic-cochaperone that is directly involved in cellular protein quality control as a mediator for selective macroautophagy. Here, we aimed to investigate the role of BAG3 in ischemic stroke. METHODS: Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation were used to mimic cerebral ischemia in vivo and in vitro. The UPS inhibitor MG132 and autophagy inhibitor 3-MA (3-methyladenine) were administered to mice to identify how BAG3 was involved after MCAO/R. Adeno-associated virus and lentiviral vector were used to regulate BAG3 expression in vivo and in vitro, respectively. Behavioral tests, 2,3,5-triphenyltetrazolium chloride staining, and Hematoxylin & Eosin staining were performed to evaluate cerebral injury following MCAO/R, and a Cell Counting kit-8 assay was conducted to assess oxygen-glucose deprivation/reoxygenation-induced injury in cells. Brain tissues and cell lysates were collected and analyzed for UPS activation, autophagy, and apoptosis. RESULTS: The UPS inhibitor alleviated MCAO injury in mice and increased autophagy and BAG3 expression, whereas the autophagy inhibitor exacerbated MCAO/R-induced injury. In addition, BAG3 overexpression significantly improved neurological outcomes, reduced infarct volume in vivo, and enhanced cell survival by activating autophagy and suppressing apoptosis in vitro. CONCLUSIONS: Our findings indicate that BAG3 overexpression activates autophagy and inhibits apoptosis to prevent cerebral ischemia/reperfusion and hypoxia/reoxygenation injury, suggesting a potential therapeutic benefit of BAG3 expression in cerebral ischemia.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Animales , Ratones , Apoptosis , Autofagia , Isquemia Encefálica/metabolismo , Glucosa , Infarto de la Arteria Cerebral Media , Oxígeno , Daño por Reperfusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA