Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
ACS Appl Mater Interfaces ; 16(29): 37581-37595, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38985579

RESUMEN

The effective repair of bone defects has long been a major challenge in clinical practice. Currently, research efforts mostly focus on achieving sufficiently good bone repair, with little attention paid to achieving both good and fast repair. However, achieving highly efficient (H-efficient) bone repair, which is both good and fast, can shorten the treatment cycle and facilitate rapid patient recovery. Therefore, the development of a H-efficient bone repair material is of significant importance. This study incorporated the previously developed osteoinductive photothermal agent (PTA) BPICT into printing paste to prepare a near-infrared (NIR)-responsive BPICT scaffold. Subsequently, the effects of photothermal therapy (PTT) on bone repair and drug release were assessed in vitro. To further validate the H-efficient bone repair properties of the BPICT scaffold, the scaffold was implanted into bone defects and its ability to promote bone repair in vivo was evaluated through radiology and histopathological analysis. The results indicated that compared to scaffolds containing only Icaritin (ICT), the BPICT scaffold can achieve PTT to promote bone repair through NIR irradiation, while also enabling the controlled release of ICT from the scaffold to enhance bone repair. Within the same observation period, the BPICT scaffold achieves more efficient bone repair than the ICT scaffold, significantly shortening the bone repair cycle while ensuring the effectiveness of bone repair. Therefore, the NIR-responsive scaffold based on PTT-mediated controlled release of bone growth factors represents a feasible solution for promoting H-efficient bone repair in the area of bone defects.


Asunto(s)
Regeneración Ósea , Rayos Infrarrojos , Andamios del Tejido , Andamios del Tejido/química , Animales , Regeneración Ósea/efectos de los fármacos , Terapia Fototérmica , Ratones , Osteogénesis/efectos de los fármacos , Humanos
2.
Adv Healthc Mater ; 12(26): e2300935, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37363954

RESUMEN

Messenger RNA (mRNA)-based vaccines have enormous potential in infectious disease prevention and tumor neoantigen application. However, developing an advanced delivery system for efficient mRNA delivery and intracellular release for protein translation remains a challenge. Herein, a biocompatible biomimetic system is designed using red blood cell-derived nanoerythrosomes (NER) and black phosphorus nanosheets (BP) for mRNA delivery. BP is covalently modified with polyethyleneimine (PEI), serving as a core to efficiently condense mRNA via electrostatic interactions. To facilitate the spleen targeting of the mRNA-loaded BP (BPmRNA ), NER is co-extruded with BPmRNA to construct a stable "core-shell" nanovaccine (NER@BPmRNA ). The mRNA nanovaccine exhibits efficient protein expression and immune activation via BP-mediated adjuvant effect and enhanced lysosomal escape. In vivo evaluation demonstrates that the system delivery of mRNA encoding coronavirus receptor-binding domain (RBD) significantly increases the antibody titer and pseudovirus neutralization effect compared with that of NER without BP assistance. Furthermore, the mRNA extracted from mouse melanoma tissues is utilized to simulate tumor neoantigen delivered by NER@BPmRNA . In the vaccinated mice, BP-assisted NER for the delivery of melanoma mRNA can induce more antibodies that specifically recognize tumor antigens. Thus, BP-assisted NER can serve as a safe and effective delivery vehicle in mRNA-based therapy.


Asunto(s)
Melanoma , Fósforo , Animales , Ratones , Fósforo/química , ARN Mensajero/genética , Sistemas de Liberación de Medicamentos , Antígenos de Neoplasias
3.
ACS Appl Mater Interfaces ; 15(22): 26285-26297, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37220137

RESUMEN

Pyroptosis is accompanied by immunogenic mediators' release and serves as an innovative strategy to reprogram tumor microenvironments. However, damaged mitochondria, the origin of pyroptosis, are frequently eliminated by mitophagy, which will severely impair pyroptosis-elicited immune activation. Herein, black phosphorus nanosheets (BP) are employed as a pyroptosis inducer delivery and mitophagy flux blocking system since the degradation of BP could impair lysosomal function by altering the pH within lysosomes. The pyroptosis inducer of lonidamine (LND) was precoupled with the mitochondrial target moiety of triphenylphosphonium to facilitate the occurrence of pyroptosis. The mitochondria-targeting LND-modified BP (BPTLD) were further encapsulated into the macrophage membrane to endow the BPTLD with blood-brain barrier penetration and tumor-targeting capability. The antitumor activities of membrane-encapsulated BPTLD (M@BPTLD) were investigated using a murine orthotopic glioblastoma model. The results demonstrated that the engineered nanosystem of M@BPTLD could target the mitochondria, and induce as well as reinforce pyroptosis via mitophagy flux blocking, thereby boosting the release of immune-activated factors to promote the maturation of dendritic cells. Furthermore, upon near-infrared (NIR) irradiation, M@BPTLD induced stronger mitochondrial oxidative stress, which further advanced robust immunogenic pyroptosis in glioblastoma cells. Thus, this study utilized the autophagy flux inhibition and phototherapy performance of BP to amplify LND-mediated pyroptosis, which might greatly contribute to the development of pyroptosis nanomodulators.


Asunto(s)
Glioblastoma , Animales , Ratones , Glioblastoma/metabolismo , Piroptosis , Fósforo/farmacología , Mitocondrias/metabolismo , Microambiente Tumoral
4.
J Am Chem Soc ; 136(6): 2630-6, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24432974

RESUMEN

Water-soluble derivatives of gadolinium-containing metallofullerenes have been considered to be excellent candidates for new magnetic resonance imaging (MRI) contrast agents because of their high relaxivity and characteristic encapsulation of the lanthanide ions (Gd(3+)), preventing their release into the bioenvironment. The trimetallic nitride template endohedral metallofullerenes (TNT EMFs) have further advantages of high stability, high relative yield, and encapsulation of three Gd(3+) ions per molecule as illustrated by the previously reported nearly spherical, Gd3N@I(h)-C80. In this study, we report the preparation and functionalization of a lower-symmetry EMF, Gd3N@C(s)-C84, with a pentalene (fused pentagons) motif and an egg-shaped structure. The Gd3N@C84 derivative exhibits a higher (1)H MR relaxivity compared to that of the Gd3N@C80 derivative synthesized the same way, at low (0.47 T), medium (1.4 T), and high (9.4 T) magnetic fields. The Gd3N@C(s)-C84 derivative exhibits a higher hydroxyl content and aggregate size, as confirmed by X-ray photoelectron spectroscopy (XPS) and dynamic light scattering (DLS) experiments, which could be the main reasons for the higher relaxivity.


Asunto(s)
Medios de Contraste/química , Fulerenos/química , Gadolinio/química , Imagen por Resonancia Magnética
5.
Nat Chem ; 5(10): 880-5, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24056346

RESUMEN

Although fullerenes were discovered nearly three decades ago, the mechanism of their formation remains a mystery. Many versions of the classic 'bottom-up' formation mechanism have been advanced, starting with C2 units that build up to form chains and rings of carbon atoms and ultimately form those well-known isolated fullerenes (for example, I(h)-C60). In recent years, evidence from laboratory and interstellar observations has emerged to suggest a 'top-down' mechanism, whereby small isolated fullerenes are formed via shrinkage of giant fullerenes generated from graphene sheets. Here, we present molecular structural evidence for this top-down mechanism based on metal carbide metallofullerenes M2C2@C1(51383)-C84 (M = Y, Gd). We propose that the unique asymmetric C1(51383)-C84 cage with destabilizing fused pentagons is a preserved 'missing link' in the top-down mechanism, and in well-established rearrangement steps can form many well-known, high-symmetry fullerene structures that account for the majority of solvent-extractable metallofullerenes.


Asunto(s)
Fulerenos/química , Gadolinio/química , Itrio/química , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Estructura Molecular , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA