Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Foods ; 13(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38890829

RESUMEN

Herein, a new starch film incorporating laver was developed to address issues related to inadequate water resistance and suboptimal preservation quality in food packaging. The integration of laver into starch film formulations offers a compelling avenue for creating biodegradable, active, and smart food packaging. Scanning electron microscope (SEM) analysis revealed that the starch film with a laver concentration of 70% exhibited a uniformly flat microstructure, as expected. Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of intermolecular interactions and hydrogen bonding between the starch and laver. Viscoelastic tests demonstrated the superior film-forming performance of the starch/laver composite films. Moreover, it was found that the most favorable concentration of incorporated laver was 10%. Specifically, the S7-3 film emerged as a promising candidate for food packaging applications, boasting the highest contact angle (CA) value of 114.98 ± 1.28°, the lowest water solubility (WS) value of 15.38%, and a reduced water vapor transmission rate (WVTR) value of 2.52 g/m2 × h. Additionally, the S3-7 film displayed an extraordinary tensile strength of 32.47 MPa, an elongation at break of 19.04%, and a Young's modulus of 606.83 MPa. Furthermore, the starch/laver composite films exhibited outstanding UV-blocking capabilities, exceptional pH-responsive behavior, and significant antioxidant activity, underscoring their potential for packaging applications with laver integration.

2.
Int J Biol Macromol ; 266(Pt 1): 131191, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552680

RESUMEN

The excessive water sensitivity of hydroxypropyl methylcellulose (HPMC) films prevent them from being used extensively. In order to overcome this limitation, superhydrophobic HPMC films were meticulously crafted through the utilization of a composite of polydimethylsiloxane (PDMS) and ball-milled rice starch, corn starch, or potato starch (RS/CS/PS) for the coating process. Initially possessing hydrophilic properties, the HPMC Film (CA = 49.3 ± 1.8°) underwent a transformative hydrophobic conversion upon the application of PDMS, resulting in a static contact angle measuring up to 103.4 ± 2.0°. Notably, the synergistic combination of PDMS-coated HPMC with ball-milled starch demonstrated exceptional superhydrophobic attributes. Particularly, the treated HPMC-based film, specifically the HP-CS-2 h film, showcased an impressive contact angle of 170.5° alongside a minimal sliding angle of 5.2°. The impact of diverse starch types and the ball milling treatment on the PDMS/starch coatings and HPMC film was thoroughly examined using scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXS), and particle size analysis. These studies demonstrated that the low surface energy and roughness required for the creation of superhydrophobic HPMC-based films were imparted by the hierarchical structure formed by the application of PDMS/ball-milled starch. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE: Polydimethylsiloxane (PubChem CID: 24764); Hydroxypropyl methylcellulose (PubChem CID: 671); Ethyl acetate (PubChem CID: 8857).


Asunto(s)
Dimetilpolisiloxanos , Interacciones Hidrofóbicas e Hidrofílicas , Derivados de la Hipromelosa , Almidón , Almidón/química , Dimetilpolisiloxanos/química , Derivados de la Hipromelosa/química , Agua/química
3.
Int J Biol Macromol ; 261(Pt 1): 129754, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278387

RESUMEN

Peach gum (PG) is a valuable polymeric feedstock for developing eco-friendly, bio-safe, and functional materials. However, PG has limited use in food packaging due to its inferior mechanical and antibacterial properties. To overcome these limitations, we created a dual cross-linked network by introducing chitosan (CS) and glycerol to the PG matrix. Our research discovered that incorporating CS into the PG matrix significantly improved its Young's modulus, from 277.62 to 925.89 MPa, and its tensile strength from 5.96 to 39.94 MPa. Furthermore, the inclusion of glycerol greatly increased the elongation. These enhancements were attributed to the ionic and hydrogen-bonding interactions between the two biopolymers. Additionally, the composite films exhibited strong antibacterial effects, reducing the total number of colonies by 99.2 % and 99.9 % against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively. The incorporation of CS resulted in more amorphous films, enhancing their stiffness, flexibility, and barrier properties. To assess the practical application of PG/CS composite films, we conducted a comparative analysis between non-packaged strawberries and strawberries packaged with these films. The results demonstrated that the composite polyelectrolyte film extended the shelf life of strawberries better than the non-packaged fruits.


Asunto(s)
Quitosano , Prunus persica , Polielectrolitos , Glicerol , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacología , Embalaje de Alimentos/métodos
4.
Foods ; 12(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36766078

RESUMEN

The good oxygen barrier and hydrophobic properties of curdlan (CL) film might be suitable complements for MC film, and its similar glucose unit and thermal-gel character might endow the methyl cellulose (MC)/CL blended system with compatibility and good comprehensive properties. Thus, MC/CL blended films were developed. The effects of MC/CL blend ratios on the microstructures and physical properties of the blends were characterized by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), oxygen and water vapor permeability testing, dynamic mechanical analysis (DMA), light transmittance testing, tensile testing, hydrophilic property testing, and water solubility testing. The introduction of CL affected the molecular aggregation and crystallization of the MC molecules, suggesting MC-CL molecular interactions. The cross-sectional roughness of the MC/CL film increased with an increase in CL content, while the surface of the MC/CL 5:5 film was smoother than those of the MC/CL 7:3 and 3:7 films. Only one glass transition temperature, which was between that of the MC and CL films, was observed for the MC/CL 7:3 and MC/CL 5:5 films, indicating the good compatibility of the MC and CL molecules at these two blend ratios. The hydrophobicity and water insolubility increased with the CL content, which was due to the combined effects of more hydrophobic cavities in the CL triple-helix and increased surface roughness. Increased oxygen barrier properties with increasing CL content might be a combined effect of the increased hydrogen bonds and hydrophilic ektexines of the CL triple-helix. The elongations of the blended films were higher than those of the MC film, which might be related to its increased water content. The MC/CL 7:3 and MC/CL 5:5 films retained the good light transmittance and tensile strength of the MC film, which corresponded well to their good compatibility and might be due to the effects of the MC-CL molecular interactions and the relative smooth morphologies. MC/CL 5:5 showed improved water vapor barrier properties, which might be due to its smooth surface morphologies. This research offers new MC based films with improved properties and good compatibility, providing great potential for use as edible coatings, capsules, and packaging materials.

5.
J Zhejiang Univ Sci ; 4(3): 270-5, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12765278

RESUMEN

For an energy-efficient induction machine, the life-cycle cost (LCC) usually is the most important index to the consumer. With this target, the optimization design of a motor is a complex nonlinear problem with constraints. To solve the problem, the authors introduce a united random algorithm. At first, the problem is divided into two parts, the optimal rotor slots and the optimization of other dimensions. Before optimizing the rotor slots with genetic algorithm (GA), the second part is solved with TABU algorithm to simplify the problem. The numerical results showed that this method is better than the method using a traditional algorithm.


Asunto(s)
Algoritmos , Diseño Asistido por Computadora , Transferencia de Energía , Diseño de Equipo/métodos , Magnetismo/instrumentación , Movimiento (Física) , Procesos Estocásticos , Equipos y Suministros/economía , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA