Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Adv Sci (Weinh) ; : e2407092, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39319636

RESUMEN

The incorporation of defects and cocatalysts is known to be effective in improving photocatalytic activity, yet their coupled contribution to the photocatalytic hydrogen evolution process has not been well-explored. In this study, We demonstrate that the incorporation of S vacancies and NiSe can contribute to the improvement of charge separation efficiency via the formation of a strong electric field within the bulk ZnIn2S4 (ZIS) and on its surface. More importantly, We also demonstrate that the synergy of S vacancies and NiSe benefits the overall hydrogen evolution activity by facilitating the H2O adsorption and dissociation process. This is particularly important for hydrogen evolution taking place under alkaline conditions where the proton concentration is low, allowing ZISv-NiSe (containing abundant S vacancies) to outperform ZIS-NiSe under alkaline conditions. In contrast, under acid conditions, since there are already sufficient amounts of protons available for reaction, the hydrogen evolution activity became governed by the hydrogen adsorption/desorption process rather than the H2O dissociation process. This leads to ZIS-NiSe exhibiting higher activity than ZISv-NiSe due to its more favorable hydrogen adsorption energy. The findings thus provide insights into how defect and cocatalyst modification strategies can be tailor-made to improve hydrogen evolution activity under different pH conditions.

3.
Acta Pharm Sin B ; 14(9): 4028-4044, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39309487

RESUMEN

There are only eight approved small molecule antiviral drugs for treating COVID-19. Among them, four are nucleotide analogues (remdesivir, JT001, molnupiravir, and azvudine), while the other four are protease inhibitors (nirmatrelvir, ensitrelvir, leritrelvir, and simnotrelvir-ritonavir). Antiviral resistance, unfavourable drug‒drug interaction, and toxicity have been reported in previous studies. Thus there is a dearth of new treatment options for SARS-CoV-2. In this work, a three-tier cell-based screening was employed to identify novel compounds with anti-SARS-CoV-2 activity. One compound, designated 172, demonstrated broad-spectrum antiviral activity against multiple human pathogenic coronaviruses and different SARS-CoV-2 variants of concern. Mechanistic studies validated by reverse genetics showed that compound 172 inhibits the 3-chymotrypsin-like protease (3CLpro) by binding to an allosteric site and reduces 3CLpro dimerization. A drug synergistic checkerboard assay demonstrated that compound 172 can achieve drug synergy with nirmatrelvir in vitro. In vivo studies confirmed the antiviral activity of compound 172 in both Golden Syrian Hamsters and K18 humanized ACE2 mice. Overall, this study identified an alternative druggable site on the SARS-CoV-2 3CLpro, proposed a potential combination therapy with nirmatrelvir to reduce the risk of antiviral resistance and shed light on the development of allosteric protease inhibitors for treating a range of coronavirus diseases.

4.
Chem Soc Rev ; 53(19): 9954, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39292144

RESUMEN

Correction for 'Recent progress in SERS monitoring of photocatalytic reactions' by Xinlu Zheng et al., Chem. Soc. Rev., 2024, 53, 656-683, https://doi.org/10.1039/D3CS00462G.

5.
World J Diabetes ; 15(7): 1461-1476, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39099824

RESUMEN

In this paper, we concentrate on updating the clinical research on sodium-glucose cotransporter inhibitors (SGLTis) for patients with type 2 diabetes who have heart failure with a preserved injection fraction, acute heart failure, atrial fibrillation, primary prevention of atherosclerotic cardiovascular disease/cardiovascular disease, and acute myocardial infarction. We searched the data of randomized controlled trials and meta-analyses of SGLTis in patients with diabetes from PubMed between January 1, 2020 and April 6, 2024 for our review. According to our review, certain SGLTis (empagliflozin, dapagliflozin, canagliflozin, and tofogliflozin), but not sodium-glucose cotransporter 1 inhibitor (SGLT1i), exhibit relatively superior clinical safety and effectiveness for treating the abovementioned diseases. Proper utilization of SGLTis in these patients can foster clinical improvement and offer an alternative medication option. However, clinical trials involving SGLTis for certain diseases have relatively small sample sizes, brief intervention durations, and conclusions based on weak evidence, necessitating additional data. These findings are significant and valuable for providing a more comprehensive reference and new possibilities for the clinical utilization and scientific exploration of SGLTis.

6.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125876

RESUMEN

Cotton is essential for the textile industry as a primary source of natural fibers. However, environmental factors like drought present significant challenges to its cultivation, adversely affecting both production levels and fiber quality. Enhancing cotton's drought resilience has the potential to reduce yield losses and support the growth of cotton farming. In this study, the cotton calcium-dependent protein kinase GhCDPK16 was characterized, and the transcription level of GhCDPK16 was significantly upregulated under drought and various stress-related hormone treatments. Physiological analyses revealed that the overexpression of GhCDPK16 improved drought stress resistance in Arabidopsis by enhancing osmotic adjustment capacity and boosting antioxidant enzyme activities. In contrast, silencing GhCDPK16 in cotton resulted in increased dehydration compared with the control. Furthermore, reduced antioxidant enzyme activities and downregulation of ABA-related genes were observed in GhCDPK16-silenced plants. These findings not only enhanced our understanding of the biological functions of GhCDPK16 and the mechanisms underlying drought stress resistance but also underscored the considerable potential of GhCDPK16 in improving drought resilience in cotton.


Asunto(s)
Resistencia a la Sequía , Regulación de la Expresión Génica de las Plantas , Gossypium , Proteínas de Plantas , Proteínas Quinasas , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/fisiología , Resistencia a la Sequía/genética , Gossypium/genética , Gossypium/metabolismo , Gossypium/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética
7.
J Am Chem Soc ; 146(22): 15538-15548, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38769050

RESUMEN

The integration of oxidation and reduction half-reactions to amplify their synergy presents a considerable challenge in CO2 photoconversion. Addressing this challenge requires the construction of spatially adjacent redox sites while suppressing charge recombination at these sites. This study introduces an innovative approach that utilizes spatial synergy to enable synergistic redox reactions within atomic proximity and employs spin polarization to inhibit charge recombination. We incorporate Mn into Co3O4 as a catalyst, in which Mn sites tend to enrich holes as water activation sites, while adjacent Co sites preferentially capture electrons to activate CO2, forming a spatial synergy. The direct H transfer from H2O at Mn sites facilitates the formation of *COOH on adjacent Co sites with remarkably favorable thermodynamic energy. Notably, the incorporation of Mn induces spin polarization in the system, significantly suppressing the recombination of photogenerated charges at redox sites. This effect is further enhanced by applying an external magnetic field. By synergizing spatial synergy and spin polarization, Mn/Co3O4 exhibits a CH4 production rate of 23.4 µmol g-1 h-1 from CO2 photoreduction, showcasing a 28.8 times enhancement over Co3O4. This study first introduces spin polarization to address charge recombination issues at spatially adjacent redox sites, offering novel insights for synergistic redox photocatalytic systems.

8.
Nat Commun ; 15(1): 2144, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459021

RESUMEN

Host survival depends on the elimination of virus and mitigation of tissue damage. Herein, we report the modulation of D-mannose flux rewires the virus-triggered immunometabolic response cascade and reduces tissue damage. Safe and inexpensive D-mannose can compete with glucose for the same transporter and hexokinase. Such competitions suppress glycolysis, reduce mitochondrial reactive-oxygen-species and succinate-mediated hypoxia-inducible factor-1α, and thus reduce virus-induced proinflammatory cytokine production. The combinatorial treatment by D-mannose and antiviral monotherapy exhibits in vivo synergy despite delayed antiviral treatment in mouse model of virus infections. Phosphomannose isomerase (PMI) knockout cells are viable, whereas addition of D-mannose to the PMI knockout cells blocks cell proliferation, indicating that PMI activity determines the beneficial effect of D-mannose. PMI inhibition suppress a panel of virus replication via affecting host and viral surface protein glycosylation. However, D-mannose does not suppress PMI activity or virus fitness. Taken together, PMI-centered therapeutic strategy clears virus infection while D-mannose treatment reprograms glycolysis for control of collateral damage.


Asunto(s)
Manosa-6-Fosfato Isomerasa , Manosa , Animales , Ratones , Manosa-6-Fosfato Isomerasa/metabolismo , Glicosilación , Manosa/metabolismo , Glucosa/metabolismo , Antivirales/farmacología
9.
mBio ; 15(4): e0039224, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38411085

RESUMEN

SARS-CoV-2, the causative agent of COVID-19, has been intensely studied in search of effective antiviral treatments. The immunosuppressant cyclosporine A (CsA) has been suggested to be a pan-coronavirus inhibitor, yet its underlying mechanism remained largely unknown. Here, we found that non-structural protein 1 (Nsp1) of SARS-CoV-2 usurped CsA-suppressed nuclear factor of activated T cells (NFAT) signaling to drive the expression of cellular DEAD-box helicase 5 (DDX5), which facilitates viral replication. Nsp1 interacted with calcineurin A (CnA) to displace the regulatory protein regulator of calcineurin 3 (RCAN3) of CnA for NFAT activation. The influence of NFAT activation on SARS-CoV-2 replication was also validated by using the Nsp1-deficient mutant virus. Calcineurin inhibitors, such as CsA and VIVIT, inhibited SARS-CoV-2 replication and exhibited synergistic antiviral effects when used in combination with nirmatrelvir. Our study delineated the molecular mechanism of CsA-mediated inhibition of SARS-CoV-2 replication and the anti-SARS-CoV-2 action of calcineurin inhibitors. IMPORTANCE: Cyclosporine A (CsA), commonly used to inhibit immune responses, is also known to have anti-SARS-CoV-2 activity, but its mode of action remains elusive. Here, we provide a model to explain how CsA antagonizes SARS-CoV-2 through three critical proteins: DDX5, NFAT1, and Nsp1. DDX5 is a cellular facilitator of SARS-CoV-2 replication, and NFAT1 controls the production of DDX5. Nsp1 is a viral protein absent from the mature viral particle and capable of activating the function of NFAT1 and DDX5. CsA and similar agents suppress Nsp1, NFAT1, and DDX5 to exert their anti-SARS-CoV-2 activity either alone or in combination with Paxlovid.


Asunto(s)
COVID-19 , SARS-CoV-2 , Transducción de Señal , Proteínas no Estructurales Virales , Humanos , Antivirales , Calcineurina/metabolismo , Inhibidores de la Calcineurina/farmacología , COVID-19/virología , Ciclosporina/farmacología , Factores de Transcripción NFATC/metabolismo , SARS-CoV-2/fisiología , Proteínas no Estructurales Virales/metabolismo
10.
11.
Chem Soc Rev ; 53(2): 656-683, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38165865

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical technique renowned for its ultra-high sensitivity. Extensive research in SERS has led to the development of a wide range of SERS substrates, including plasmonic metals, semiconductors, metal organic frameworks, and their assemblies. Some of these materials are also excellent photocatalysts, and by taking advantage of their bifunctional characteristics, the photocatalytic processes that occur on their surface can be monitored in situ via SERS. This provides us with unique opportunities to gain valuable insights into the intricate details of the photocatalytic processes that are challenging to access using other techniques. In this review, we highlight key development in in situ and/or real-time SERS-tracking of photocatalytic reactions. We begin by providing a brief account of recent developments in SERS substrates, followed by discussions on how SERS can be used to elucidate crucial aspects of photocatalytic processes, including: (1) the influence of the surrounding media on charge carrier extraction; (2) the direction of charge carrier transfer; (3) the pathway of photocatalytic activation; and (4) differentiation between the effects of photo-thermal and energetic electrons. Additionally, we discuss the benefits of tip-enhanced Raman spectroscopy (TERS) due to the ability to achieve high-spatial-resolution measurements. Finally, we address major challenges and propose potential directions for the future of SERS monitoring of photocatalytic reactions. By leveraging the capabilities of SERS, we can uncover new insights into photocatalytic processes, paving the way for advancements in sustainable energy and environmental remediation.

12.
ACS Infect Dis ; 10(3): 858-869, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-37897418

RESUMEN

SARS-CoV-2 nsp14 functions both as an exoribonuclease (ExoN) together with its critical cofactor nsp10 and as an S-adenosyl methionine-dependent (guanine-N7) methyltransferase (MTase), which makes it an attractive target for the development of pan-anti-SARS-CoV-2 drugs. Herein, we screened a panel of compounds (and drugs) and found that certain compounds, especially Bi(III)-based compounds, could allosterically inhibit both MTase and ExoN activities of nsp14 potently. We further demonstrated that Bi(III) binds to both nsp14 and nsp10, resulting in the release of Zn(II) ions from the enzymes as well as alternation of protein quaternary structures. The in vitro activities of the compounds were also validated in SARS-CoV-2-infected mammalian cells. Importantly, we showed that nsp14 serves as an authentic target of Bi(III)-based antivirals in SARS-CoV-2-infected mammalian cells by quantification of both the protein and inhibitor. This study highlights the importance of nsp14/nsp10 as a potential target for the development of pan-antivirals against SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Metiltransferasas/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Antivirales/farmacología , Mamíferos/metabolismo
13.
J Colloid Interface Sci ; 657: 133-141, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38035416

RESUMEN

As one of the most promising photocatalysts for H2 evolution, graphitic carbon nitride (CN) has many appealing attributes. However, the activity of pristine CN remains unsatisfactory due to severe charge carrier recombination and lack of active sites. In this study, we report a two-step approach for the synthesis of CN nanotubes (TCN) loaded with NiS nanoparticles. The resulting composite photocatalysts gave a H2 evolution rate of 752.9 µmol g-1 h-1, which is 42.3 times higher compared to the pristine CN photocatalyst. Experimental and simulation results showed that the Schottky junction which was formed between TCN and NiS was key to achieving high activity. This is because the formation of Schottky junction prevented the backflow of electrons from NiS to TCN, which improved charge separation efficiency. More importantly, it also led to the accumulation of electrons on NiS, which significantly weakened the SH bond, such that the intermediate hydrogen species desorbed more easily from NiS surface to promote H2 evolution activity.

14.
Biol Res Nurs ; 26(1): 150-159, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37616306

RESUMEN

Introduction: To explore the relationship between the composite dietary antioxidant index (CDAI) and gout to provide support for preventing gout through dietary intervention. Methods: Eligible participants from the 2007 to 2018 National Health and Nutrition Examination Survey aged 20 years and older were included in this cross-sectional study. The weighted chi-square test was used to compare the categorical variables difference between CDAI quartiles groups. The weighted univariate and binary logistic regression analysis were used to test the association between variables and gout. The weighted multivariable logistic regression was used to test the association of CDAI and gout in 4 different models. Subgroup analysis on the associations of CDAI with gout was conducted with stratified factors. Results: The final participants were 26,117, 13,103 (50.17%) were female, 8718 (33.38%) were 40-59 years, 11,200 (42.88%) were white and 1232 (4.72%) had gout. After adjusting for all covariates, the CDAI was associated with gout (odds ratio (OR), .97; 95% CI: .95-1.00). Participants in the highest CDAI quantile group were at low risk of gout (odds ratio (OR), .65; 95% CI: .50-.84) versus those in the lowest quantile group. Subgroup analysis and interaction test showed no significant dependence on diabetes mellitus (DM), marital status, alcohol status, hypertension, poverty income ratio (PIR), education level, body mass index (BMI), smoke status, age, sex, race, and chronic kidney disease (CKD) on this association (all p for interaction >.05). Conclusions: Composite dietary antioxidant index was inversely associated with gout in US adults, and dietary antioxidant intervention might be a promising method in the therapy of gout and greater emphasis should be placed on zinc, selenium, carotenoids, vitamins A, C, and E.


Asunto(s)
Antioxidantes , Gota , Adulto , Humanos , Femenino , Masculino , Encuestas Nutricionales , Estudios Transversales , Dieta
15.
NPJ Vaccines ; 8(1): 177, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985668

RESUMEN

We compared the protective effects of inactivated SARS-CoV-2 vaccines derived from the ancestral and the currently circulating BA.5.2 strains against infection with multiple variants in Syrian golden hamsters. Vaccination with BA.5.2 effectively protected against infection with the Omicron subvariants including XBB.1, but not the Alpha or Delta variant. In contrast, hamsters vaccinated with the ancestral strain demonstrated decent neutralization activity against both the Omicron and non-Omicron variants. Our findings might instruct future design and formulation of SARS-CoV-2 vaccines.

16.
Opt Express ; 31(21): 34748-34763, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37859224

RESUMEN

In the current visible light communication (VLC) system, a condenser lens is generally used in the front of receiver to achieve a higher data rate, making an extremely narrow field-of-view for the receiver. With the spread of Industrial Internet of Things (IIoT), the communication between mobile terminals is urgently required. A wide-range detecting method for VLC system in IIoT scenario is asked. In this paper, a novel self-adaptive wide-FoV receiver involving reconfigurable intelligent surfaces (RIS) is proposed. The effective detecting range of the receiver can be expanded by dynamically adjusting the incident light directions with the assistance of RIS. Based on the maximum arrived flux criterion, the mathematical model is established and the optimized RIS parameter tuning algorithm is presented. The feasibility and validity of the method are verified by simulation. The results show that the tolerable transceiver offset can be increased to 2∼4 times as the conventional receiver.

17.
Chem Sci ; 14(38): 10570-10579, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37799995

RESUMEN

Uncovering how host metal(loid)s mediate the immune response against invading pathogens is critical for better understanding the pathogenesis mechanism of infectious disease. Clinical data show that imbalance of host metal(loid)s is closely associated with the severity and mortality of COVID-19. However, it remains elusive how metal(loid)s, which are essential elements for all forms of life and closely associated with multiple diseases if dysregulated, are involved in COVID-19 pathophysiology and immunopathology. Herein, we built up a metal-coding assisted multiplexed serological metallome and immunoproteome profiling system to characterize the links of metallome with COVID-19 pathogenesis and immunity. We found distinct metallome features in COVID-19 patients compared with non-infected control subjects, which may serve as a biomarker for disease diagnosis. Moreover, we generated the first correlation network between the host metallome and immunity mediators, and unbiasedly uncovered a strong association of selenium with interleukin-10 (IL-10). Supplementation of selenium to immune cells resulted in enhanced IL-10 expression in B cells and reduced induction of proinflammatory cytokines in B and CD4+ T cells. The selenium-enhanced IL-10 production in B cells was confirmed to be attributable to the activation of ERK and Akt pathways. We further validated our cellular data in SARS-CoV-2-infected K18-hACE2 mice, and found that selenium supplementation alleviated SARS-CoV-2-induced lung damage characterized by decreased alveolar inflammatory infiltrates through restoration of virus-repressed selenoproteins to alleviate oxidative stress. Our approach can be readily extended to other diseases to understand how the host defends against invading pathogens through regulation of metallome.

18.
Nat Protoc ; 18(9): 2717-2744, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37495750

RESUMEN

The interactions between molecules and noble metal nanosurfaces play a central role in many areas of nanotechnology. The surface chemistry of noble metal surfaces under ideal, clean conditions has been extensively studied; however, clean conditions are seldom met in real-world applications. We developed a sensitive and robust characterization technique for probing the surface chemistry of nanomaterials in the complex environments that are directly relevant to their applications. Surface-enhanced Raman spectroscopy (SERS) can be used to probe the interaction of plasmonic nanoparticles with light to enhance the Raman signals of molecules near the surface of nanoparticles. Here, we explain how to couple SERS with surface-accessible plasmonic-enhancing substrates, which are capped with weakly adsorbing capping ligands such as citrate and chloride ions, to allow molecule-metal interactions to be probed in situ and in real time, thus providing information on the surface orientation and the formation and breaking of chemical bonds. The procedure covers the synthesis and characterization of surface-accessible colloids, the preliminary SERS screening with agglomerated colloids, the synthesis and characterization of interfacial nanoparticle assemblies, termed metal liquid-like films, and the in situ biphasic SERS analysis with metal liquid-like films. The applications of the approach are illustrated using two examples: the probing of π-metal interactions and that of target/ligand-particle interactions on hollow bimetallic nanostars. This protocol, from the initial synthesis of the surface-accessible plasmonic nanoparticles to the final in situ biphasic SERS analysis, requires ~14 h and is ideally suited to users with basic knowledge in performing Raman spectroscopy and wet synthesis of metal nanoparticles.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Espectrometría Raman/métodos , Coloides/química , Nanotecnología , Nanopartículas del Metal/química
19.
Acc Chem Res ; 56(15): 2072-2083, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37436068

RESUMEN

ConspectusWhen the size of materials is reduced, their volume decreases much faster than their surface area, which in the most extreme case leads to 2D nanomaterials which are "all surface". Since atoms at the surface have free energies, electronic states, and mobility which are very different from bulk atoms, nanomaterials that have large surface-to-volume ratios can display remarkable new properties compared to their bulk counterparts. More generally, the surface is where nanomaterials interact with their environment, which in turn places surface chemistry at the heart of catalysis, nanotechnology, and sensing applications. Understanding and utilizing nanosurfaces are not possible without appropriate spectroscopic and microscopic characterization techniques. An emerging technique in this area is surface-enhanced Raman spectroscopy (SERS), which utilizes the interaction between plasmonic nanoparticles and light to enhance the Raman signals of molecules near the nanoparticles' surfaces. SERS has the great advantage that it can provide detailed in situ information on surface orientation and binding between molecules and the nanosurface. A long-standing dilemma that has limited the applications of SERS in surface chemistry studies is the choice between surface-accessibility and plasmonic activity. More specifically, the synthesis of metal nanomaterials with strong plasmonic and SERS-enhancing properties typically involves the use of strongly adsorbing modifier molecules, but these modifiers also passivate the surface of the product material, which prevents the general application of SERS in the analysis of weaker molecule-metal interactions.In this Account, we discuss our efforts in the development of modifier-free synthetic approaches to synthesize surface-accessible, plasmonic nanomaterials for SERS. We start by discussing the definition of "modifiers" and "surface-accessibility", especially in the context of surface chemistry studies in SERS. As a general rule of thumb, the chemical ligands on surface-accessible nanomaterials should be easily displaceable by a wide range of target molecules relevant to potential applications. We then introduce modifier-free approaches for the bottom-up synthesis of colloidal nanoparticles, which are the basic building blocks for nanotechnology. Following this, we introduce modifier-free interfacial self-assembly approaches developed by our group that allow the creation of multidimensional plasmonic nanoparticle arrays from different types of nanoparticle-building blocks. These multidimensional arrays can be further combined with different types of functional materials to form surface-accessible multifunctional hybrid plasmonic materials. Finally, we demonstrate applications for surface-accessible nanomaterials as plasmonic substrates for SERS studies of surface chemistry. Importantly, our studies revealed that the removal of modifiers led to not only significantly enhanced properties but also the observation of new surface chemistry phenomena that had been previously overlooked or misunderstood in the literature. Realizing the current limitations of modifier-based approaches provides new perspectives in manipulating molecule-metal interactions in nanotechnology and can have significant implications in the design and synthesis of the next generation of nanomaterials.

20.
ACS Nano ; 17(12): 11655-11664, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37272604

RESUMEN

Incorporation of plasmonic metal nanomaterials can significantly enhance the visible light response of semiconductor photocatalysts via localized surface plasmon resonance (LSPR) mechanisms. However, the surfaces of plasmonic metal nanomaterials are often covered with surfactant molecules, which is undesired when the nanomaterials are used for photocatalytic hydrogen evolution, since surfactant molecules could significantly compromise the nanomaterials' cocatalyst functionalities by blocking the active sites and/or by inhibiting the surface charge transfer process. Herein, we demonstrate a method that assembles Au nanoparticles (NPs) into Au colloidosomes (AuCSs) without modifying their surfaces with surfactants. The resulting AuCSs were then coupled with CdS for the formation of Au-CdS composite photocatalysts through an in situ deposition method. The assembly of Au NPs induced a broader and stronger LSPR response for AuCSs, while the absence of surfactants allowed them to act efficiently as cocatalysts. This essentially enhanced the electron-hole pair generation rate and further their utilization efficiency, leading to an extremely high hydrogen evolution rate of 235.8 mmol·g-1·h-1 under simulated sunlight excitation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA