Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Plant Pathol ; 21(9): 1227-1239, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32686295

RESUMEN

While numerous effectors that suppress plant immunity have been identified from bacteria, fungi, and oomycete pathogens, relatively little is known for nematode effectors. Several dozen effectors have been reported from the soybean cyst nematode (SCN). Previous studies suggest that a hypersensitive response-like programmed cell death is triggered at nematode feeding sites in soybean during an incompatible interaction. However, virulent SCN populations overcome this incompatibility using unknown mechanisms. A soybean BAG6 (Bcl-2 associated anthanogene 6) gene previously reported by us to be highly up-regulated in degenerating feeding sites induced by SCN in a resistant soybean line was attenuated in response to a virulent SCN population. We show that GmBAG6-1 induces cell death in yeast like its Arabidopsis homolog AtBAG6 and also in soybean. This led us to hypothesize that virulent SCN may target GmBAG6-1 as part of their strategy to overcome soybean defence responses during infection. Thus, we used a yeast viability assay to screen SCN effector candidates for their ability to specifically suppress GmBAG6-1-induced cell death. We identified several effectors that strongly suppressed cell death mediated by GmBAG6-1. Two effectors identified as suppressors showed direct interaction with GmBAG6-1 in yeast, suggesting that one mechanism of cell death suppression may occur through an interaction with this host protein.


Asunto(s)
Arabidopsis/inmunología , Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Tylenchoidea/fisiología , Animales , Arabidopsis/genética , Arabidopsis/parasitología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Muerte Celular , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Glycine max/parasitología
2.
Nat Commun ; 8: 14822, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28345654

RESUMEN

Two types of resistant soybean (Glycine max (L.) Merr.) sources are widely used against soybean cyst nematode (SCN, Heterodera glycines Ichinohe). These include Peking-type soybean, whose resistance requires both the rhg1-a and Rhg4 alleles, and PI 88788-type soybean, whose resistance requires only the rhg1-b allele. Multiple copy number of PI 88788-type GmSNAP18, GmAAT, and GmWI12 in one genomic segment simultaneously contribute to rhg1-b resistance. Using an integrated set of genetic and genomic approaches, we demonstrate that the rhg1-a Peking-type GmSNAP18 is sufficient for resistance to SCN in combination with Rhg4. The two SNAPs (soluble NSF attachment proteins) differ by only five amino acids. Our findings suggest that Peking-type GmSNAP18 is performing a different role in SCN resistance than PI 88788-type GmSNAP18. As such, this is an example of a pathogen resistance gene that has evolved to underlie two types of resistance, yet ensure the same function within a single plant species.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Glycine max/genética , Glycine max/parasitología , Nematodos/fisiología , Proteínas de Soja/genética , Alelos , Animales , Clonación Molecular , ADN de Plantas/genética , Prueba de Complementación Genética , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Parásitos , Mutación INDEL , Modelos Genéticos , Polimorfismo de Nucleótido Simple
3.
BMC Res Notes ; 6: 255, 2013 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-23830484

RESUMEN

BACKGROUND: Bean pod mottle virus (BPMV) based virus-induced gene silencing (VIGS) vectors have been developed and used in soybean for the functional analysis of genes involved in disease resistance to foliar pathogens. However, BPMV-VIGS protocols for studying genes involved in disease resistance or symbiotic associations with root microbes have not been developed. FINDINGS: Here we describe a BPMV-VIGS protocol suitable for reverse genetic studies in soybean roots. We use this method for analyzing soybean genes involved in resistance to soybean cyst nematode (SCN). A detailed SCN screening pipeline is described. CONCLUSIONS: The VIGS method described here provides a new tool to identify genes involved in soybean-nematode interactions. This method could be adapted to study genes associated with any root pathogenic or symbiotic associations.


Asunto(s)
Comovirus/metabolismo , Silenciador del Gen , Vectores Genéticos , Glycine max/genética , Glycine max/parasitología , Nematodos/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/parasitología , Interferencia de ARN , Animales , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Parásitos/genética , Raíces de Plantas
4.
Nature ; 492(7428): 256-60, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23235880

RESUMEN

Soybean (Glycine max (L.) Merr.) is an important crop that provides a sustainable source of protein and oil worldwide. Soybean cyst nematode (Heterodera glycines Ichinohe) is a microscopic roundworm that feeds on the roots of soybean and is a major constraint to soybean production. This nematode causes more than US$1 billion in yield losses annually in the United States alone, making it the most economically important pathogen on soybean. Although planting of resistant cultivars forms the core management strategy for this pathogen, nothing is known about the nature of resistance. Moreover, the increase in virulent populations of this parasite on most known resistance sources necessitates the development of novel approaches for control. Here we report the map-based cloning of a gene at the Rhg4 (for resistance to Heterodera glycines 4) locus, a major quantitative trait locus contributing to resistance to this pathogen. Mutation analysis, gene silencing and transgenic complementation confirm that the gene confers resistance. The gene encodes a serine hydroxymethyltransferase, an enzyme that is ubiquitous in nature and structurally conserved across kingdoms. The enzyme is responsible for interconversion of serine and glycine and is essential for cellular one-carbon metabolism. Alleles of Rhg4 conferring resistance or susceptibility differ by two genetic polymorphisms that alter a key regulatory property of the enzyme. Our discovery reveals an unprecedented plant resistance mechanism against a pathogen. The mechanistic knowledge of the resistance gene can be readily exploited to improve nematode resistance of soybean, an increasingly important global crop.


Asunto(s)
Glycine max/genética , Glycine max/parasitología , Interacciones Huésped-Parásitos , Nematodos/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Animales , Análisis Mutacional de ADN , Orden Génico , Silenciador del Gen , Prueba de Complementación Genética , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Haplotipos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Plantas/química , Polimorfismo Genético/genética , Estructura Terciaria de Proteína , Sitios de Carácter Cuantitativo/genética , Glycine max/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA