Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Heliyon ; 10(12): e33077, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38994107

RESUMEN

Dysfunction of the blood-brain barrier (BBB) has been increasingly recognised as a critical early event in Alzheimer's disease (AD) pathophysiology. Central to this mechanism is the impaired function of brain endothelial cells (BECs), the primary structural constituents of the BBB, the study of which is imperative for understanding AD pathophysiology. However, the published methods to isolate BECs are time-consuming and have a low success rate. Here, we developed a rapid and streamlined protocol for BEC isolation without using transgenic reporters, flow cytometry, and magnetic beads, which are essential for existing methods. Using this novel protocol, we isolated high-purity BECs from cell clusters of cortical microvessels from wild-type and APPswe/PS1dE9 (APP/PS1, a classical AD model) mice at 2, 4 and 9 months of age. Reduced levels of tight junction proteins Claudin-5 and Zonula Occludens-1, as well as glucose transporter 1, were observed in the isolated cortical microvessels from APP/PS1 mice and amyloid-ß (Aß) oligomer-treated BECs from wild-type mice. Trans-well permeability assay showed increased FITC-dextran leakage in BECs treated with Aß, suggesting impaired BBB permeability. BECs obtained using our novel protocol can undergo various experimental analyses, including immunofluorescence staining, western blotting, real-time PCR, and trans-well permeability assay. In conclusion, our novel protocol represents a reliable and valuable tool for in vitro modelling BBB to study AD-related mechanisms and develop targeted therapeutic strategies.

2.
Neurosci Bull ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042298

RESUMEN

Oligodendrocyte precursor cells (OPCs) are a heterogeneous multipotent population in the central nervous system (CNS) that appear during embryogenesis and persist as resident cells in the adult brain parenchyma. OPCs could generate oligodendrocytes to participate in myelination. Recent advances have renewed our knowledge of OPC biology by discovering novel markers of oligodendroglial cells, the myelin-independent roles of OPCs, and the regulatory mechanism of OPC development. In this review, we will explore the updated knowledge on OPC identity, their multifaceted roles in the CNS in health and diseases, as well as the regulatory mechanisms that are involved in their developmental stages, which hopefully would contribute to a further understanding of OPCs and attract attention in the field of OPC biology.

3.
Brain ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054908

RESUMEN

Mitochondrial malfunction associated with impaired mitochondrial quality control and self-renewal machinery, known as mitophagy, is an under-appreciated mechanism precipitating synaptic loss and cognitive impairments in Alzheimer's disease (AD). Promoting mitophagy has been shown to improve cognitive function in AD animals. However, the regulatory mechanism was unclear, which formed the aim of this study. Here, we found that a neuron-specific loss of Bcl-2 family member BOK in AD patients and APPswe/PS1dE9 (APP/PS1) mice is closely associated with mitochondrial damage and mitophagy defects. We further revealed that BOK is the key to the Parkin-mediated mitophagy through competitive binding to the MCL1/Parkin complex, resulting in Parkin release and translocation to damaged mitochondria to initiate mitophagy. Furthermore, overexpressing bok in hippocampal neurons of APP/PS1 mice alleviated mitophagy and mitochondrial malfunction, resulting in improved cognitive function. Conversely, the knockdown of bok worsened the aforementioned AD-related changes. Our findings uncover a novel mechanism of BOK signaling through regulating Parkin-mediated mitophagy to mitigate amyloid pathology, mitochondrial and synaptic malfunctions, and cognitive decline in AD, thus representing a promising therapeutic target.

4.
Trends Mol Med ; 30(7): 607-608, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38845327
5.
Glia ; 72(9): 1555-1571, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38829008

RESUMEN

As one of the top causes of blindness worldwide, glaucoma leads to diverse optic neuropathies such as degeneration of retinal ganglion cells (RGCs). It is widely accepted that the level of intraocular pressure (IOP) is a major risk factor in human glaucoma, and reduction of IOP level is the principally most well-known method to prevent cell death of RGCs. However, clinical studies show that lowering IOP fails to prevent RGC degeneration in the progression of glaucoma. Thus, a comprehensive understanding of glaucoma pathological process is required for developing new therapeutic strategies. In this study, we provide functional and histological evidence showing that optic nerve defects occurred before retina damage in an ocular hypertension glaucoma mouse model, in which oligodendroglial lineage cells were responsible for the subsequent neuropathology. By treatment with clemastine, an Food and Drug Administration (FDA)-approved first-generation antihistamine medicine, we demonstrate that the optic nerve and retina damages were attenuated via promoting oligodendrocyte precursor cell (OPC) differentiation and enhancing remyelination. Taken together, our results reveal the timeline of the optic neuropathies in glaucoma and highlight the potential role of oligodendroglial lineage cells playing in its treatment. Clemastine may be used in future clinical applications for demyelination-associated glaucoma.


Asunto(s)
Clemastina , Glaucoma , Ratones Endogámicos C57BL , Remielinización , Retina , Animales , Clemastina/farmacología , Clemastina/uso terapéutico , Glaucoma/patología , Glaucoma/tratamiento farmacológico , Retina/patología , Retina/efectos de los fármacos , Remielinización/efectos de los fármacos , Remielinización/fisiología , Ratones , Nervio Óptico/efectos de los fármacos , Nervio Óptico/patología , Modelos Animales de Enfermedad , Enfermedades del Nervio Óptico/tratamiento farmacológico , Enfermedades del Nervio Óptico/patología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/patología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología
6.
Trends Mol Med ; 30(7): 642-659, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38594094

RESUMEN

Neuropathic pain is a chronic debilitating condition caused by nerve injury or a variety of diseases. At the core of neuropathic pain lies the aberrant neuronal excitability in the peripheral and/or central nervous system (PNS and CNS). Enhanced connexin expression and abnormal activation of connexin-assembled gap junctional channels are prominent in neuropathic pain along with reactive gliosis, contributing to neuronal hypersensitivity and hyperexcitability. In this review, we delve into the current understanding of how connexin expression and function contribute to the pathogenesis and pathophysiology of neuropathic pain and argue for connexins as potential therapeutic targets for neuropathic pain management.


Asunto(s)
Conexinas , Neuralgia , Neuralgia/metabolismo , Neuralgia/tratamiento farmacológico , Humanos , Conexinas/metabolismo , Animales , Uniones Comunicantes/metabolismo , Terapia Molecular Dirigida
7.
J Zhejiang Univ Sci B ; : 1-11, 2024 Apr 07.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38616136

RESUMEN

Stress has been considered as a major risk factor for depressive disorders, triggering depression onset via inducing persistent dysfunctions in specialized brain regions and neural circuits. Among various regions across the brain, the lateral habenula (LHb) serves as a critical hub for processing aversive information during the dynamic process of stress accumulation, thus having been implicated in the pathogenesis of depression. LHb neurons integrate aversive valence conveyed by distinct upstream inputs, many of which selectively innervate the medial part (LHbM) or lateral part (LHbL) of LHb. LHb subregions also separately assign aversive valence via dissociable projections to the downstream targets in the midbrain which provides feedback loops. Despite these strides, the spatiotemporal dynamics of LHb-centric neural circuits remain elusive during the progression of depression-like state under stress. In this review, we attempt to describe a framework in which LHb orchestrates aversive valence via the input-output specific neuronal architecture. Notably, a physiological form of Hebbian plasticity in LHb under multiple stressors has been unveiled to incubate neuronal hyperactivity in an input-specific manner, which causally encodes chronic stress experience and drives depression onset. Collectively, the recent progress and future efforts in elucidating LHb circuits shed light on early interventions and circuit-specific antidepressant therapies.

8.
Cell Death Dis ; 15(4): 258, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609388

RESUMEN

The impairment of the blood-brain barrier (BBB) has been increasingly recognised as a critical element in the early pathogenesis of Alzheimer's disease (AD), prompting a focus on brain endothelial cells (BECs), which serve as the primary constituents of the BBB. Death receptor 6 (DR6) is highly expressed in brain vasculature and acts downstream of the Wnt/ß-catenin pathway to promote BBB formation during development. Here, we found that brain endothelial DR6 levels were significantly reduced in a murine model of AD (APPswe/PS1dE9 mice) at the onset of amyloid-ß (Aß) accumulation. Toxic Aß25-35 oligomer treatment recapitulated the reduced DR6 in cultured BECs. We further showed that suppressing DR6 resulted in BBB malfunction in the presence of Aß25-35 oligomers. In contrast, overexpressing DR6 increased the level of BBB functional proteins through the activation of the Wnt/ß-catenin and JNK pathways. More importantly, DR6 overexpression in BECs was sufficient to rescue BBB dysfunction in vitro. In conclusion, our findings provide new insight into the role of endothelial DR6 in AD pathogenesis, highlighting its potential as a therapeutic target to tackle BBB dysfunction in early-stage AD progression.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Animales , Ratones , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , beta Catenina , Encéfalo , Células Endoteliales , Receptores del Factor de Necrosis Tumoral
9.
Neural Regen Res ; 19(10): 2175-2188, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38488551

RESUMEN

Alzheimer's disease (AD) is a progressive and degenerative neurological disease characterized by the deterioration of cognitive functions. While a definitive cure and optimal medication to impede disease progression are currently unavailable, a plethora of studies have highlighted the potential advantages of exercise rehabilitation for managing this condition. Those studies show that exercise rehabilitation can enhance cognitive function and improve the quality of life for individuals affected by AD. Therefore, exercise rehabilitation has been regarded as one of the most important strategies for managing patients with AD. Herein, we provide a comprehensive analysis of the currently available findings on exercise rehabilitation in patients with AD, with a focus on the exercise types which have shown efficacy when implemented alone or combined with other treatment methods, as well as the potential mechanisms underlying these positive effects. Specifically, we explain how exercise may improve the brain microenvironment and neuronal plasticity. In conclusion, exercise is a cost-effective intervention to enhance cognitive performance and improve quality of life in patients with mild to moderate cognitive dysfunction. Therefore, it can potentially become both a physical activity and a tailored intervention. This review may aid the development of more effective and individualized treatment strategies to address the challenges imposed by this debilitating disease, especially in low- and middle-income countries.

10.
Int J Biochem Cell Biol ; 162: 106452, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37482265

RESUMEN

OBJECTIVE: The accurate diagnosis of mixed-type gastric cancer from pathology images presents a formidable challenge for pathologists, given its intricate features and resemblance to other subtypes of gastric cancer. Artificial Intelligence has the potential to overcome this hurdle. This study aimed to leverage deep machine learning techniques to establish a precise and efficient diagnostic approach for this cancer type which can also predict the metastatic risk using two software, U-Net and QuPath, which have not been trialled in gastric cancers. METHODS: A U-Net neural network was trained to recognise, and segment differentiated components from 186 pathology images of mixed-type gastric cancer. Undifferentiated components in the same images were annotated using the open-source pathology imaging software QuPath. The outcomes from U-Net and QuPath were used to calculate the ratios of differentiation/undifferentiated components which were correlated to lymph node metastasis. RESULTS: The models established by U-Net recognised ∼91% of the regions of interest, with precision, recall, and F1 values of 90.2%, 90.9% and 94.6%, respectively, indicating a high level of accuracy and reliability. Furthermore, the receiver operating characteristic curve analysis showed an area under the cure of 91%, indicating good performance. A bell-curve correlation between the differentiated/undifferentiated ratio and lymphatic metastasis was found (highest risk between 0.683 and 1.03), which is paradigm-shifting. CONCLUSION: U-Net and QuPath exhibit promising accuracy in the identification of differentiated and undifferentiated components in mixed-type gastric cancer, as well as paradigm-shifting prediction of metastasis. These findings bring us one step closer to their potential clinical application.


Asunto(s)
Aprendizaje Profundo , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patología , Inteligencia Artificial , Reproducibilidad de los Resultados , Curva ROC , Metástasis Linfática
11.
Trends Neurosci ; 46(7): 581-596, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37183154

RESUMEN

Adult oligodendrocyte precursor cells (aOPCs), transformed from fetal OPCs, are idiosyncratic neuroglia of the central nervous system (CNS) that are distinct in many ways from other glial cells. OPCs have been classically studied in the context of their remyelinating capacity. Recent studies, however, revealed that aOPCs not only contribute to post-lesional remyelination but also play diverse crucial roles in multiple neurological diseases. In this review we briefly present the physiology of aOPCs and summarize current knowledge of the beneficial and detrimental roles of aOPCs in different CNS diseases. We discuss unique features of aOPC death, reactivity, and changes during senescence, as well as aOPC interactions with other glial cells and pathological remodeling during disease. Finally, we outline future perspectives for the study of aOPCs in brain pathologies which may instigate the development of aOPC-targeting therapeutic strategies.


Asunto(s)
Células Precursoras de Oligodendrocitos , Remielinización , Células Precursoras de Oligodendrocitos/fisiología , Sistema Nervioso Central , Neuroglía , Remielinización/fisiología , Oligodendroglía/fisiología , Diferenciación Celular/fisiología , Vaina de Mielina/fisiología
12.
Front Psychiatry ; 14: 1026616, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970271

RESUMEN

Currently, the diagnosis of attention deficit hyperactivity disorder (ADHD) is solely based on behavioral tests prescribed by the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5). However, biomarkers can be more objective and accurate for diagnosis and evaluating treatment efficacy. Thus, this review aimed to identify potential biomarkers for ADHD. Search terms "ADHD," and "biomarker" combined with one of "protein," "blood/serum," "gene," and "neuro" were used to identify human and animal studies in PubMed, Ovid Medline, and Web of Science. Only papers in English were included. Potential biomarkers were categorized into radiographic, molecular, physiologic, or histologic markers. The radiographic analysis can identify specific activity changes in several brain regions in individuals with ADHD. Several molecular biomarkers in peripheral blood cells and some physiologic biomarkers were found in a small number of participants. There were no published histologic biomarkers for ADHD. Overall, most associations between ADHD and potential biomarkers were properly controlled. In conclusion, a series of biomarkers in the literature are promising as objective parameters to more accurately diagnose ADHD, especially in those with comorbidities that prevent the use of DSM-5. However, more research is needed to confirm the reliability of the biomarkers in larger cohort studies.

13.
Ann Neurol ; 94(1): 163-181, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36966488

RESUMEN

OBJECTIVE: Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disease that leads to severe disability. A large proportion of NMOSD patients are seropositive for aquaporin-4 autoantibodies (AQP4-IgG, named as NMO-IgG) targeting AQP4, which is selectively expressed on astrocytes in the central nervous system. This study tests the hypothesis that in response to NMO-IgG, the pathogenic astrocyte-derived exosomes are released and injure the neighboring cells. METHODS: IgG purified from serum of either NMOSD patients or healthy controls was used to generate astrocyte-derived exosomes (AST-ExosNMO vs AST-ExosCON ) in cultured rat astrocytes. The exosomes were respectively delivered to cultured rat oligodendrocytes in vitro, tissue culture of rat optic nerve ex vivo, and rat optic nerve in vivo to evaluate the pathogenic roles of AST-ExosNMO . The microRNA (miRNA) sequencing of AST-Exos and verification were performed to identify the key pathogenic miRNA. The custom-designed adeno-associated virus (AAV) antagonizing the key miRNA was evaluated for its therapeutic effects in vivo. Moreover, the serum levels of the key exosomal miRNA were measured between NMOSD patients and healthy controls. RESULTS: AST-ExosNMO led to notable demyelination in both cultured oligodendrocytes and optic nerve tissue. Exosomal miR-129-2-3p was identified as the key miRNA mediating the demyelinating pathogenesis via downstream target gene SMAD3. AAV antagonizing miR-129-2-3p protected against demyelination in an NMOSD rodent model. The serum exosomal miR-129-2-3p level was significantly elevated in NMOSD patients and correlated with disease severity. INTERPRETATION: Astrocytes targeted by NMO-IgG release pathogenic exosomes that could potentially be used as therapeutic targets or disease monitoring biomarkers in NMOSD. ANN NEUROL 2023;94:163-181.


Asunto(s)
Exosomas , MicroARNs , Neuromielitis Óptica , Ratas , Animales , Astrocitos/patología , Acuaporina 4 , Roedores/genética , Inmunoglobulina G , Autoanticuerpos/farmacología
14.
J Tradit Chin Med ; 43(1): 95-104, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36640000

RESUMEN

OBJECTIVE: To explore whether kidney deficiency (KYD) is prone to metabolic disorders may be linked to impaired mitochondrial function in thermogenesis and metabolic tissues. METHODS: A rat model of KYD was used, which was established using Sprague Dawley rat dams with warm preference subjected to herbal treatment that can improve kidney . The human relevance was confirmed by reduced serum corticosterone levels, and increased preference for warm location. RESULTS: KYD Rats were underdeveloped. Adenosine-triphosphate (ATP) production was reduced in the brown fat, but increased in the muscle. However, oxidative phosphorylated complexes to generate ATP and mitochondrial biogenesis marker were reduced in both tissues. When the second insult of high-fat diet (HFD) was introduced, KYD rats gained less weight yet developed more severe lipid and glucose metabolic disorders. This may be driven by disregulated liver gluconeogenesis marker forkhead box protein O1 and lipid metabolic regulator cholesterol 7 alpha-hydroxylase. CONCLUSION: KYD rats exhibited reduced mito-chondrial function in the brown fat, but were partially compensated by skeletal muscle, associated with the phenotype of warm preference and metabolic disorder, which was further exacerbated by additional HFD consumption. Future studies can focus on treatment targetting mitochondria function to reverse this phenotype.


Asunto(s)
Enfermedades Metabólicas , Mitocondrias , Ratas , Animales , Humanos , Ratas Sprague-Dawley , Mitocondrias/genética , Mitocondrias/metabolismo , Dieta Alta en Grasa/efectos adversos , Adenosina Trifosfato/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Lípidos
15.
Neuron ; 111(2): 190-201.e8, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36384142

RESUMEN

Oligodendrocyte precursor cells (OPCs) undergo an extensive and coordinated migration in the developing CNS, using the pre-formed scaffold of developed blood vessels as their physical substrate for migration. While OPC association with vasculature is critical for dispersal, equally important for permitting differentiation and proper myelination of target axons is their appropriate and timely detachment, but regulation of this process remains unclear. Here we demonstrate a correlation between the developmental formation of astrocytic endfeet on vessels and the termination of OPC perivascular migration. Ex vivo and in vivo live imaging shows that astrocyte endfeet physically displace OPCs from vasculature, and genetic abrogation of endfoot formation hinders both OPC detachment from vessels and subsequent differentiation. Astrocyte-derived semaphorins 3a and 6a act to repel OPCs from blood vessels at the cessation of their perivascular migration and, in so doing, permit subsequent OPC differentiation by insulating them from a maturation inhibitory endothelial niche.


Asunto(s)
Células Precursoras de Oligodendrocitos , Astrocitos , Oligodendroglía/fisiología , Diferenciación Celular/fisiología , Movimiento Celular/fisiología
16.
Int J Biochem Cell Biol ; 155: 106347, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36565990

RESUMEN

Perimenopause is a natural transition to menopause, when hormone disturbance can result in both short-term mental disorders, such as anxiety, and long-term neuroinflammation due to blood-brain barrier (BBB) impairment, which may lead to more serious neurological disorders later on, such as dementia. Effective treatments may prevent both short-term and long-term neurological sequela, which formed the aim of this study. In aged female C57BL/6 mice (16-18 months of age), mesenchymal stromal cells (MSCs) differentiated from human-induced pluripotent stem cells (iPSCs), were administered via tail vein injection. Mice showed increased blood estrogen levels, alleviated anxiety and neuroinflammation, and improved BBB integrity. Interestingly, transplanted MSCs were located close to ovarian sympathetic nerves and decreased ovarian norepinephrine levels, which in turn increased ovarian estrogen secretion. Moreover, the administration of anastrozole, an inhibitor of estrogen synthesis, diminished the therapeutic effects of MSCs in vivo, suggesting the effect to be estrogen-dependent. In vitro study confirmed the impact of MSCs on sympathetic nerves via mitochondria exchange. In conclusion, iPSC-derived MSCs may provide a novel option to manage perimenopause-related hormonal dysregulation and neurological disorders during the female aging process.


Asunto(s)
Células Madre Pluripotentes Inducidas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Ratones , Humanos , Femenino , Animales , Anciano , Enfermedades Neuroinflamatorias , Ratones Endogámicos C57BL , Envejecimiento , Ansiedad/terapia
17.
Front Psychiatry ; 13: 1053937, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506415

RESUMEN

Objective: This systematic review aimed to evaluate the efficacy of exercise programmes with nicotine replacement therapy (NRT) for smoking cessation in adults. Introduction: Nicotine addiction is mediated by dopamine. Exercise can also activate the dopamine reward system. Therefore, exercise may effectively facilitate NRT to reduce cigarette cravings and withdrawal symptoms. Inclusion criteria: Clinical trials between 2000 and 2022 used exercise protocols of any intensity for smoking cessation, in current smokers or recent quitters of both genders, aged 18-70, without severe diseases and pregnancy. Mental disorders were not excluded, as exercise can improve mental health status. Therefore, it may be as effective among people with mental health issues as the general population in preventing nicotine cravings and supporting abstinence. Methods: Four databases (PubMed, Embase, Cochrane, and Medline) were searched for papers in English using the terms "nicotine replacement therapy', "exercise," and "smoking cessation." Titles and abstracts were screened for potentially eligibility before full texts were reviewed. Sample size, gender, study duration, and age was then extracted. The certainty of the evidence was assessed using Joanna Briggs Institute's (JBI's) GRADE approach. Results: Seventeen studies were identified with a total of 3,191 participants. Three studies are not a randomised control study. There was moderate-high quality evidence that exercise can aid NRT in promoting smoking cessation in the short term. Several studies reported temporary reductions in cravings; however, only one trial reported a decrease in cigarette consumption due to exercise intervention and one demonstrated increased smoking abstinence at 1 year of the intervention. Conclusion: Exercise with NRT aids smoking cessation in the short term, but no evidence suggests its efficacy in the long term when combined. Future trials should include larger sample sizes and strategies to increase exercise adherence.

18.
Mol Psychiatry ; 27(12): 5154-5166, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36131044

RESUMEN

Although the link of white matter to pathophysiology of schizophrenia is documented, loss of myelin is not detected in patients at the early stages of the disease, suggesting that pathological evolution of schizophrenia may occur before significant myelin loss. Disrupted-in-schizophrenia-1 (DISC1) protein is highly expressed in oligodendrocyte precursor cells (OPCs) and regulates their maturation. Recently, DISC1-Δ3, a major DISC1 variant that lacks exon 3, has been identified in schizophrenia patients, although its pathological significance remains unknown. In this study, we detected in schizophrenia patients a previously unidentified pathological phenotype of OPCs exhibiting excessive branching. We replicated this phenotype by generating a mouse strain expressing DISC1-Δ3 gene in OPCs. We further demonstrated that pathological OPCs, rather than myelin defects, drive the onset of schizophrenic phenotype by hyperactivating OPCs' Wnt/ß-catenin pathway, which consequently upregulates Wnt Inhibitory Factor 1 (Wif1), leading to the aberrant synaptic formation and neuronal activity. Suppressing Wif1 in OPCs rescues synaptic loss and behavioral disorders in DISC1-Δ3 mice. Our findings reveal the pathogenetic role of OPC-specific DISC1-Δ3 variant in the onset of schizophrenia and highlight the therapeutic potential of Wif1 as an alternative target for the treatment of this disease.


Asunto(s)
Células Precursoras de Oligodendrocitos , Esquizofrenia , Animales , Humanos , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/genética , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/patología , Oligodendroglía/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/patología , Modelos Animales de Enfermedad
19.
Brain ; 145(12): 4474-4488, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-35788280

RESUMEN

Alzheimer's disease is a neurodegenerative disorder that causes age-dependent neurological and cognitive declines. The treatments for Alzheimer's disease pose a significant challenge, because the mechanisms of disease are not being fully understood. Malfunction of the blood-brain barrier is increasingly recognized as a major contributor to the pathophysiology of Alzheimer's disease, especially at the early stages of the disease. However, the underlying mechanisms remain poorly characterized, while few molecules can directly target and improve blood-brain barrier function in the context of Alzheimer's disease. Here, we showed dysfunctional blood-brain barrier in patients with Alzheimer's disease reflected by perivascular accumulation of blood-derived fibrinogen in the hippocampus and cortex, accompanied by decreased tight junction proteins Claudin-5 and glucose transporter Glut-1 in the brain endothelial cells. In the APPswe/PS1dE9 (APP/PS1) mouse model of Alzheimer's disease, blood-brain barrier dysfunction started at 4 months of age and became severe at 9 months of age. In the cerebral microvessels of APP/PS1 mice and amyloid-ß-treated brain endothelial cells, we found suppressed Wnt/ß-catenin signalling triggered by an increase of GSK3ß activation, but not an inhibition of the AKT pathway or switching to the Wnt/planar cell polarity pathway. Furthermore, using our newly developed optogenetic tool for controlled regulation of LRP6 (upstream regulator of the Wnt signalling) to activate Wnt/ß-catenin pathway, blood-brain barrier malfunction was restored by preventing amyloid-ß-induced brain endothelial cells impairments and promoting the barrier repair. In conclusion, targeting LRP6 in the Wnt/ß-catenin pathway in the brain endothelium can alleviate blood-brain barrier malfunction induced by amyloid-ß, which may be a potential treatment strategy for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , beta Catenina , Péptidos beta-Amiloides/metabolismo , Vía de Señalización Wnt , Modelos Animales de Enfermedad , Ratones Transgénicos
20.
J Neurotrauma ; 39(21-22): 1547-1560, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35658673

RESUMEN

Traumatic brain injury (TBI) and obesity are two common conditions in modern society; both can impair neuronal integrity and neurological function. However, it is unclear whether the coexistence of both conditions will worsen outcomes. Therefore, in a rat model, we aimed to investigate whether the coexistence of TBI and a high-fat diet (HFD) has an additive effect, leading to more severe neurological impairments, and whether they are related to changes in brain protein markers of oxidative stress, inflammation, and synaptic plasticity. Sprague-Dawley rats (female, ∼250 g) were divided into HFD (43% fat) and diet (CD) (17% fat) groups for 6 weeks. Within each dietary group, half underwent a TBI by a weight-drop device, and the other half underwent sham surgery. Short-term memory and sensory function were measured at 24 h, 1 week, 3 weeks, and 6 weeks post-TBI. Brain tissues were harvested at 24 h and 6 weeks post-TBI, and markers of oxidative stress, apoptosis, inflammation, and synaptic plasticity were measured via immunostaining and Western blotting. In rats without TBI, HFD increased the pre-synaptic protein synaptophysin. In rats with TBI, HFD resulted in worsened sensory and memory function, an increase in activated macrophages, and a decrease in the endogenous antioxidant manganese superoxide dismutase (MnSOD). Our findings suggest that the additive effect of HFD and TBI worsens short term memory and sensation deficits, and may be driven by enhanced oxidative stress and inflammation.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Animales , Ratas , Femenino , Ratas Sprague-Dawley , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/metabolismo , Estrés Oxidativo , Inflamación/metabolismo , Biomarcadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA