Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Transl Neurodegener ; 13(1): 35, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39049095

RESUMEN

BACKGROUND: Seed amplification assays (SAA) enable the amplification of pathological misfolded proteins, including α-synuclein (αSyn), in both tissue homogenates and body fluids of Parkinson's disease (PD) patients. SAA involves repeated cycles of shaking or sonication coupled with incubation periods. However, this amplification scheme has limitations in tracking protein propagation due to repeated fragmentation. METHODS: We introduced a modified form of SAA, known as Quiescent SAA (QSAA), and evaluated biopsy and autopsy samples from individuals clinically diagnosed with PD and those without synucleinopathies (control group). Brain biopsy samples were obtained from 14 PD patients and 6 controls without synucleinopathies. Additionally, skin samples were collected from 214 PD patients and 208 control subjects. Data were analyzed from April 2019 to May 2023. RESULTS: QSAA successfully amplified αSyn aggregates in brain tissue sections from mice inoculated with pre-formed fibrils. In the skin samples from 214 PD cases and 208 non-PD cases, QSAA demonstrated high sensitivity (90.2%) and specificity (91.4%) in differentiating between PD and non-PD cases. Notably, more αSyn aggregates were detected by QSAA compared to immunofluorescence with the pS129-αSyn antibody in consecutive slices of both brain and skin samples. CONCLUSION: We introduced the new QSAA method tailored for in situ amplification of αSyn aggregates in brain and skin samples while maintaining tissue integrity, providing a streamlined approach to diagnosing PD with individual variability. The integration of seeding activities with the location of deposition of αSyn seeds advances our understanding of the mechanism underlying αSyn misfolding in PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Humanos , Animales , Ratones , Femenino , Masculino , Anciano , Persona de Mediana Edad , Encéfalo/metabolismo , Encéfalo/patología , Sensibilidad y Especificidad , Piel/metabolismo , Piel/patología , Anciano de 80 o más Años
2.
Channels (Austin) ; 18(1): 2349823, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38720415

RESUMEN

Myotonia congenita (MC) is a rare hereditary muscle disease caused by variants in the CLCN1 gene. Currently, the correlation of phenotype-genotype is still uncertain between dominant-type Thomsen (TMC) and recessive-type Becker (BMC). The clinical data and auxiliary examinations of MC patients in our clinic were retrospectively collected. Electromyography was performed in 11 patients and available family members. Whole exome sequencing was conducted in all patients. The clinical and laboratory data of Chinese MC patients reported from June 2004 to December 2022 were reviewed. A total of 11 MC patients were included in the study, with a mean onset age of 12.64 ± 2.73 years. The main symptom was muscle stiffness of limbs. Warm-up phenomenon and percussion myotonia were found in all patients. Electromyogram revealed significant myotonic charges in all patients and two asymptomatic carriers, while muscle MRI and biopsy showed normal or nonspecific changes. Fourteen genetic variants including 6 novel variants were found in CLCN1. Ninety-eight Chinese patients were re-analyzed and re-summarized in this study. There were no significant differences in the demographic data, clinical characteristics, and laboratory findings between 52 TMC and 46 BMC patients. Among the 145 variants in CLCN1, some variants, including the most common variant c.892 G>A, could cause TMC in some families and BMC in others. This study expanded the clinical and genetic spectrum of Chinese patients with MC. It was difficult to distinguish between TMC and BMC only based on the clinical, laboratory, and genetic characteristics.


Asunto(s)
Pueblo Asiatico , Canales de Cloruro , Miotonía Congénita , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Adulto Joven , Pueblo Asiatico/genética , China , Canales de Cloruro/genética , Pueblos del Este de Asia , Electromiografía , Mutación , Miotonía Congénita/genética , Miotonía Congénita/fisiopatología , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA