Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 694
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38965654

RESUMEN

Inspired by animals with a slippery epidermis, durable slippery antibiofouling coatings with liquid-like wetting buckled surfaces are successfully constructed in this study by combining dynamic-interfacial-release-induced buckling with self-assembled silicon-containing diblock copolymer (diBCP). The core diBCP material is polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS). Because silicon-containing polymers with intrinsic characters of low surface energy, they easily flow over and cover a surface after it has undergone controlled thermal treatment, generating a slippery wetting layer on which can eliminate polar interactions with biomolecules. Additionally, microbuckled patterns result in curved surfaces, which offer fewer points at which organisms can attach to the surface. Different from traditional slippery liquid-infused porous surfaces, the proposed liquid-like PDMS wetting layer, chemically bonded with PS, is stable and slippery but does not flow away. PS-b-PDMS diBCPs with various PDMS volume fractions are studied to compare the influence of PDMS segment length on antibiofouling performance. The surface characteristics of the diBCPs─ease of processing, transparency, and antibiofouling, anti-icing, and self-cleaning abilities─are examined under various conditions. Being able to fabricate ecofriendly silicon-based lubricant layers without needing to use fluorinated compounds and costly material precursors is an advantage in industrial practice.

2.
Nanomaterials (Basel) ; 14(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38869559

RESUMEN

This study developed a DC-free technique that used dark-mode scanning capacitance microscopy (DM-SCM) with a small-area contact electrode to evaluate and image equivalent oxide thicknesses (EOTs). In contrast to the conventional capacitance-voltage (C-V) method, which requires a large-area contact electrode and DC voltage sweeping to provide reliable C-V curves from which the EOT can be determined, the proposed method enabled the evaluation of the EOT to a few nanometers for thermal and high-k oxides. The signal intensity equation defining the voltage modulation efficiency in scanning capacitance microscopy (SCM) indicates that thermal oxide films on silicon can serve as calibration references for the establishment of a linear relationship between the SCM signal ratio and the EOT ratio; the EOT is then determined from this relationship. Experimental results for thermal oxide films demonstrated that the EOT obtained using the DM-SCM approach closely matched the value obtained using the typical C-V method for frequencies ranging from 90 kHz to 1 MHz. The percentage differences in EOT values between the C-V and SCM measurements were smaller than 0.5%. For high-k oxide films, DM-SCM with a DC-free operation may mitigate the effect of DC voltages on evaluations of EOTs. In addition, image operations were performed to obtain EOT images showing the EOT variation induced by DC-stress-induced charge trapping. Compared with the typical C-V method, the proposed DM-SCM approach not only provides a DC-free approach for EOT evaluation, but also offers a valuable opportunity to visualize the EOT distribution before and after the application of DC stress.

3.
J Food Drug Anal ; 32(2): 155-167, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38934694

RESUMEN

In this study, a marine medicinal brown alga Sargassum cristaefolium-derived fungal strain Xylaria acuta SC1019 was isolated and identified. Column chromatography of the extracts from liquid- and solid-fermented products of the fungal strain was carried out, and led to the isolation of twenty-one compounds. Their structures were characterized by spectroscopic analysis, and the absolute configurations were further established by single X-ray diffraction analysis or modified Mosher's method as nine previously undescribed compounds, namely xylarilactones A-C (1-3), ent-gedebic acid 8-O-α-D-glucopyranoside (4), 5R-hydroxylmethylmellein 11-O-α-D-glucopyranoside (5), ent-hymatoxin E 16-O-α-D-mannopyranoside (6), 19,20-epoxycytochalasin S (7), 19,20-epoxycytochalasin T (8), and (2R)-butylitaconic acid (9), along with twelve known compounds 10-21. All the isolates were subjected to anti-inflammatory and anti-angiogenic assays. Compounds 1, 5, 7, 10, and 17 showed moderate nitric oxide production inhibitory activities in lipopolysaccharide-activated BV-2 microglial cells with IC50 values of 19.55 ± 0.35, 16.10 ± 0.57, 15.20 ± 0.87, 11.76 ± 0.49, and 11.30 ± 0.32 µM, respectively, as compared to curcumin (IC50 = 2.69 ± 0.34 µM) without any significant cytotoxicity. Compounds 7, 8, and 21 displayed potent anti-angiogenic activities by suppressing the growth of human endothelial progenitor cells with IC50 values of 0.44 ± 0.01, 0.47 ± 0.03, and 0.53 ± 0.01 µM, respectively, as compared to sorafenib (IC50 = 5.50 ± 1.50 µM).


Asunto(s)
Xylariales , Humanos , Animales , Xylariales/química , Ratones , Estructura Molecular , Phaeophyceae/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Línea Celular
4.
Mikrochim Acta ; 191(6): 307, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713296

RESUMEN

An assay that integrates histidine-rich peptides (HisRPs) with high-affinity aptamers was developed enabling the specific and sensitive determination of the target lysozyme. The enzyme-like activity of HisRP is inhibited by its interaction with a target recognized by an aptamer. In the presence of the target, lysozyme molecules progressively assemble on the surface of HisRP in a concentration-dependent manner, resulting in the gradual suppression of enzyme-like activity. This inhibition of HisRP's enzyme-like activity can be visually observed through color changes in the reaction product or quantified using UV-visible absorption spectroscopy. Under optimal conditions, the proposed colorimetric assay for lysozyme had a detection limit as low as 1 nM and exhibited excellent selectivity against other nonspecific interferents. Furthermore, subsequent research validated the practical applicability of the developed colorimetric approach to saliva samples, indicating that the assay holds significant potential for the detection of lysozymes in samples derived from humans.


Asunto(s)
Colorimetría , Muramidasa , Saliva , Muramidasa/análisis , Muramidasa/química , Muramidasa/metabolismo , Colorimetría/métodos , Humanos , Saliva/química , Saliva/enzimología , Límite de Detección , Péptidos/química , Aptámeros de Nucleótidos/química , Proteínas/análisis , Técnicas Biosensibles/métodos , Histidina/análisis , Histidina/química
5.
Comput Biol Med ; 176: 108597, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763069

RESUMEN

BACKGROUND: Recessive GJB2 variants, the most common genetic cause of hearing loss, may contribute to progressive sensorineural hearing loss (SNHL). The aim of this study is to build a realistic predictive model for GJB2-related SNHL using machine learning to enable personalized medical planning for timely intervention. METHOD: Patients with SNHL with confirmed biallelic GJB2 variants in a nationwide cohort between 2005 and 2022 were included. Different data preprocessing protocols and computational algorithms were combined to construct a prediction model. We randomly divided the dataset into training, validation, and test sets at a ratio of 72:8:20, and repeated this process ten times to obtain an average result. The performance of the models was evaluated using the mean absolute error (MAE), which refers to the discrepancy between the predicted and actual hearing thresholds. RESULTS: We enrolled 449 patients with 2184 audiograms available for deep learning analysis. SNHL progression was identified in all models and was independent of age, sex, and genotype. The average hearing progression rate was 0.61 dB HL per year. The best MAE for linear regression, multilayer perceptron, long short-term memory, and attention model were 4.42, 4.38, 4.34, and 4.76 dB HL, respectively. The long short-term memory model performed best with an average MAE of 4.34 dB HL and acceptable accuracy for up to 4 years. CONCLUSIONS: We have developed a prognostic model that uses machine learning to approximate realistic hearing progression in GJB2-related SNHL, allowing for the design of individualized medical plans, such as recommending the optimal follow-up interval for this population.


Asunto(s)
Conexina 26 , Pérdida Auditiva Sensorineural , Aprendizaje Automático , Humanos , Conexina 26/genética , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/fisiopatología , Femenino , Masculino , Adulto , Niño , Adolescente , Persona de Mediana Edad , Preescolar
6.
Front Vet Sci ; 11: 1389264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756518

RESUMEN

The genus Hepacivirus comprises a diverse range of genetically distinct viruses that infect both mammalian and non-mammalian hosts, with some posing significant risks to human and animal health. Members of the genus Hepacivirus are typically classified into fourteen species (Hepacivirus A-N), with ongoing discoveries of novel hepaciviruses like Hepacivirus P and Hepacivirus Q. In this study, a novel Hepacivirus was identified in duck liver samples collected from live poultry markets in Hunan province, China, using unbiased high-throughput sequencing and meta-transcriptomic analysis. Through sequence comparison and phylogenetic analysis, it was determined that this newly discovered Hepacivirus belongs to a new subspecies of Hepacivirus Q. Moreover, molecular screening revealed the widespread circulation of this novel virus among duck populations in various regions of Hunan province, with an overall prevalence of 13.3%. These findings significantly enhence our understanding of the genetic diversity and evolution of hepaciviruses, emphasizing the presence of genetically diverse hepaciviruses duck populations in China. Given the broad geographical distribution and relatively high positive rate, further investigations are essential to explore any potential associations between Hepacivirus Q and duck-related diseases.

7.
Biomed Environ Sci ; 37(4): 341-353, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38727157

RESUMEN

Objective: Hydroquinone (HQ), one of the phenolic metabolites of benzene, is widely recognized as an important participant in benzene-induced hematotoxicity. However, there are few relevant proteomics in HQ-induced hematotoxicity and the mechanism hasn't been fully understood yet. Methods: In this study, we treated K562 cells with 40 µmol/L HQ for 72 h, examined and validated protein expression changes by Label-free proteomic analysis and Parallel reaction monitoring (PRM), and performed bioinformatics analysis to identify interaction networks. Results: One hundred and eighty-seven upregulated differentially expressed proteins (DEPs) and 279 downregulated DEPs were identified in HQ-exposed K562 cells, which were involved in neutrophil-mediated immunity, blood microparticle, and other GO terms, as well as the lysosome, metabolic, cell cycle, and cellular senescence-related pathways. Focusing on the 23 DEGs and 5 DEPs in erythroid differentiation-related pathways, we constructed the network of protein interactions and determined 6 DEPs (STAT1, STAT3, CASP3, KIT, STAT5B, and VEGFA) as main hub proteins with the most interactions, among which STATs made a central impact and may be potential biomarkers of HQ-induced hematotoxicity. Conclusion: Our work reinforced the use of proteomics and bioinformatic approaches to advance knowledge on molecular mechanisms of HQ-induced hematotoxicity at the protein level and provide a valuable basis for further clarification.


Asunto(s)
Benceno , Hemolíticos , Proteoma , Proteoma/metabolismo , Proteómica , Benceno/toxicidad , Células K562 , Humanos , Pruebas de Toxicidad/métodos , Hemolíticos/toxicidad
8.
Vaccine ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38796326

RESUMEN

We conducted a phase I, randomized, double-blind, placebo-controlled trial including healthy adults in Sui County, Henan Province, China. Ninety-six adults were randomly assigned to one of three groups (high-dose, medium-dose, and low-dose) at a 3:1 ratio to receive one vaccine dose or placebo. Adverse events up to 28 days after each dose and serious adverse events up to 6 months after all doses were reported. Geometric mean titers and seroconversion rates were measured for anti-rotavirus neutralizing antibodies using microneutralization tests. The rates of total adverse events in the placebo group, low-dose group, medium-dose group, and high-dose group were 29.17 % (12.62 %-51.09 %), 12.50 % (2.66 %-32.36 %), 50.00 % (29.12 %-70.88 %), and 41.67 % (22.11 %-63.36 %), respectively, with no significant difference in the experimental groups compared with the placebo group. The results of the neutralizing antibody assay showed that in the adult group, the neutralizing antibody geometric mean titer at 28 days after full immunization in the low-dose group was 583.01 (95 % confidence interval [CI]: 447.12-760.20), that in the medium-dose group was 899.34 (95 % CI: 601.73-1344.14), and that in the high-dose group was 1055.24 (95 % CI: 876.28-1270.75). The GMT of serum-specific IgG at 28 days after full immunization in the low-dose group was 3444.26 (95 % CI: 2292.35-5175.02), that in the medium-dose group was 6888.55 (95 % CI: 4426.67-10719.6), and that in the high-dose group was 7511.99 (95 % CI: 3988.27-14149.0). The GMT of serum-specific IgA at 28 days after full immunization in the low-dose group was 2332.14 (95 % CI: 1538.82-3534.45), that in the medium-dose group was 4800.98 (95 % CI: 2986.64-7717.50), and that in the high-dose group was 3204.30 (95 % CI: 2175.66-4719.27). In terms of safety, adverse events were mainly Grades 1 and 2, indicating that the safety of the vaccine is within the acceptable range in the healthy adult population. Considering the GMT and positive transfer rate of neutralizing antibodies for the main immunogenicity endpoints in the experimental groups, it was initially observed that the high-dose group had higher levels of neutralizing antibodies than the medium- and low-dose groups in adults aged 18-49 years. This novel inactivated rotavirus vaccine was generally well-tolerated in adults, and the vaccine was immunogenic in adults (ClinicalTrials.gov number, NCT04626856).

9.
Pest Manag Sci ; 80(8): 4055-4068, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38567786

RESUMEN

BACKGROUND: The important wood-boring pest Batocera horsfieldi has evolved a sensitive olfactory system to locate host plants. Odorant-binding proteins (OBPs) are thought to play key roles in olfactory recognition. Therefore, exploring the physiological function of OBPs could facilitate a better understanding of insect chemical communications. RESULTS: In this research, 36 BhorOBPs genes were identified via transcriptome sequencing of adults' antennae from B. horsfieldi, and most BhorOBPs were predominantly expressed in chemosensory body parts. Through fluorescence competitive binding and fluorescence quenching assays, the antenna-specific BhorOBP28 was investigated and displayed strong binding affinities forming stable complexes with five volatiles, including (+)-α-Pinene, (+)-Limonene, ß-Pinene, (-)-Limonene, and (+)-Longifolene, which could also elicit conformation changes when they were interacting with BhorOBP28. Batocera horsfieldi females exhibited a preference for (-)-Limonene, and a repellent response to (+)-Longifolene. Feeding dsOBP19 produced by a bacteria-expressed system with a newly constructed vector could lead to the knockdown of BhorOBP28, and could further impair B. horsfieldi attraction to (-)-Limonene and repellent activity of (+)-Longifolene. The analysis of site-directed mutagenesis revealed that Leu7, Leu72, and Phe121 play a vital role in selectively binding properties of BhorOBP28. CONCLUSION: By modeling the molecular mechanism of olfactory recognition, these results demonstrate that BhorOBP28 is involved in the chemoreception of B. horsfieldi. The bacterial-expressed dsRNA delivery system gains new insights into potential population management strategies. Through the olfactory process concluded that discovering novel behavioral regulation and environmentally friendly control options for B. horsfieldi in the future. © 2024 Society of Chemical Industry.


Asunto(s)
Quirópteros , Proteínas de Insectos , Receptores Odorantes , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/química , Animales , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Femenino , Antenas de Artrópodos/metabolismo , Filogenia , Masculino
10.
J Hepatocell Carcinoma ; 11: 737-746, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38654891

RESUMEN

Aim: This study aimed to explore the effects of the triglyceride-glucose (TyG) index on hepatocellular carcinoma (HCC) development in patients with hepatitis B virus (HBV)-related liver cirrhosis (LC). Methods: A total of 242 patients with HBV-related LC were enrolled and followed-up. Logistic regression analysis was performed to investigate risk factors for HCC. Results: The median follow-up time was 37 months (range: 6-123 months). At the end of the follow-up, 11 (11.3%) patients with compensated cirrhosis (CC) and 45 (31.0%) with decompensated cirrhosis (DC) developed HCC. The TyG index was higher in the HCC group than in the non-HCC group (P=0.05). Univariate analysis showed that age (P<0.01), DC (P<0.01), TyG index (P=0.08), albumin (ALB) level (P=0.05), platelet (PLT) count (P<0.01), and HBV DNA positivity (P<0.01) were associated with HCC development. Multivariate analysis revealed that age, DC, TyG index, PLT count, and HBV DNA positivity were independent risk factors for HCC development (P=0.01, 0.01, <0.01, 0.05, and <0.01, respectively). For patients with DC, multivariate logistic regression analysis revealed that age, TyG index, and HBV DNA positivity were independent risk factors for HCC development (all P<0.05). A new model encompassing age, DC, TyG, PLT, and positive HBV DNA had optimal predictive accuracy in patients with DC or CC, with a cutoff value of 0.197. The areas under the receiver operating characteristic curves (AUROCs) of the model for predicting HCC development in patients with LC, DC, and CC were 0.778, 0.721, and 0.783, respectively. Conclusion: TyG index was identified as an independent risk factor for HCC development in patients with LC.

12.
Cell Biochem Funct ; 42(3): e4001, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38571370

RESUMEN

Carbonic anhydrase 8 (CA8) is a member of the α-carbonic anhydrase family but does not catalyze the reversible hydration of carbon dioxide. In the present study, we examined the effects of CA8 on two human colon cancer cell lines, SW480 and SW620, by suppressing CA8 expression through shRNA knockdown. Our results showed that knockdown of CA8 decreased cell growth and cell mobility in SW620 cells, but not in SW480 cells. In addition, downregulated CA8 resulted in a significant decrease of glucose uptake in both SW480 and SW620 cells. Interestingly, stable downregulation of CA8 decreased phosphofructokinase-1 expression but increased glucose transporter 3 (GLUT3) levels in SW620 cells. However, transient downregulation of CA8 fails to up-regulate GLUT3 expression, indicating that the increased GLUT3 observed in SW620-shCA8 cells is a compensatory effect. In addition, the interaction between CA8 and GLUT3 was evidenced by pull-down and IP assays. On the other hand, we showed that metformin, a first-line drug for type II diabetes patients, significantly inhibited cell migration of SW620 cells, depending on the expressions of CA8 and focal adhesion kinase. Taken together, our data demonstrate that when compared to primary colon cancer SW480 cells, metastatic colon cancer SW620 cells respond differently to downregulated CA8, indicating that CA8 in more aggressive cancer cells may play a more important role in controlling cell survival and metformin response. CA8 may affect glucose metabolism- and cell invasion-related molecules in colon cancer, suggesting that CA8 may be a potential target in future cancer therapy.


Asunto(s)
Anhidrasas Carbónicas , Neoplasias del Colon , Neoplasias Colorrectales , Diabetes Mellitus Tipo 2 , Metformina , Humanos , Transportador de Glucosa de Tipo 3/genética , Línea Celular Tumoral , Supervivencia Celular , Neoplasias del Colon/metabolismo , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Glucosa , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo
13.
Crit Rev Oncol Hematol ; 196: 104313, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428702

RESUMEN

Cancer is a major disease that endangers human health. Cancer drug resistance and relapse are the two main causes contributing to cancer treatment failure. Cancer stem cells (CSCs) are a small fraction of tumor cells that are responsible for tumorigenesis, metastasis, relapse, and resistance to conventional anticancer therapies. Therefore, CSCs are considered to be the root of cancer recurrence, metastasis, and drug resistance. Novel anticancer strategies need to face this new challenge and explore their efficacy against CSCs. Recently, immunotherapy has made rapid advances in cancer treatment, and its potential against CSCs is also an interesting area of research. Meanwhile, immunotherapy strategies are novel therapeutic modalities with promising results in targeting CSCs. In this review, we summarize the targeting of CSCs by various immunotherapy strategies such as monoclonal antibodies(mAb), tumor vaccines, immune checkpoint inhibitors, and chimeric antigen receptor-T cells(CAR-T) in pre-clinical and clinical studies. This review provides new insights into the application of these immunotherapeutic approaches to potential anti-tumor therapies in the future.


Asunto(s)
Inmunoterapia , Recurrencia Local de Neoplasia , Humanos , Recurrencia Local de Neoplasia/patología , Inmunoterapia/métodos , Resistencia a Antineoplásicos , Anticuerpos Monoclonales/uso terapéutico , Células Madre Neoplásicas/patología , Recurrencia
14.
Plant Physiol Biochem ; 208: 108472, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38442627

RESUMEN

Brassinosteroids (BR) play crucial roles in plant development and abiotic stresses in plants. Exogenous application of BR can significantly enhance cold tolerance in rice. However, the regulatory relationship between cold tolerance and the BR signaling pathway in rice remains largely unknown. Here, we characterized functions of the BR receptor OsBRI1 in response to cold tolerance in rice using its loss-of-function mutant (d61-1). Our results showed that mutant d61-1 was less tolerant to cold stress than wild-type (WT). Besides, d61-1 had lower levels than WT for some physiological parameters, including catalase activity (CAT), superoxide dismutase activity (SOD), peroxidase activity (POD), peroxidase activity (PRO), soluble protein, and soluble sugar content, while malondialdehyde content (MDA) and relative electrical conductivity (REC) levels in d61-1 were higher than those in WT plants. These results indicated that the loss of OsBRI1 function resulted in decreased cold tolerance in rice. In addition, we performed RNA sequencing (RNA-seq) of WT and d61-1 mutant under cold stress. Numerous common and unique differentially expressed genes (DEGs) with up- and down-regulation were observed in WT and d61-1 mutant. Some DEGs were expressed to various degrees, even opposite, between CK1 vs. T1 (WT) and CK2 vs. T2 (d61-1). Among these specific DEGs, some typical genes are involved in plant tolerance to cold stress. Through weighted correlation network analysis (WGCNA), 50 hub genes were screened in the turquoise and blue module. Many genes were involved in cold stress and plant hormone, such as Os01g0279800 (BRI1-associated receptor kinase 1 precursor), Os10g0513200 (Dwarf and tiller-enhancing 1, DTE1), Os02g0706400 (MYB-related transcription factor, OsRL3), etc. Differential expression levels of some genes were verified in WT and d61-1 under cold stress using qRT-PCR. These valuable findings and gene resources will be critical for understanding the regulatory relationships between cold stress tolerance and the BR signaling pathways in rice.


Asunto(s)
Brasinoesteroides , Oryza , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Oryza/metabolismo , Perfilación de la Expresión Génica , Respuesta al Choque por Frío/genética , Peroxidasas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
15.
Ann Bot ; 134(1): 71-84, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38470192

RESUMEN

BACKGROUND AND AIMS: Niche differentiation is a crucial issue in speciation. Although it has a well-known role in adaptive processes of hybrid angiosperms, it is less understood in hybrid ferns. Here, we investigate whether an intermediate ecological niche of a fern hybrid is a novel adaptation that provides insights into fern hybrid speciation. METHODS: Pteris fauriei (Pteridaceae) is a natural hybrid fern, occurring in environments between its parent species. The maternal Pteris minor is found in sunny areas, but the habitat of the paternal Pteris latipinna is shady. We combined data from morphology, leaf anatomy and photosynthetic traits to explore adaptation and differentiation, along with measuring the environmental features of their niches. We also performed experiments in a common garden to understand ecological plasticity. KEY RESULTS: The hybrid P. fauriei was intermediate between the parent species in stomatal density, leaf anatomical features and photosynthetic characteristics in both natural habitats and a common garden. Interestingly, the maternal P. minor showed significant environmental plasticity and was more similar to the hybrid P. fauriei in the common garden, suggesting that the maternal species experiences stress in its natural habitats but thrives in environments similar to those of the hybrid. CONCLUSIONS: Based on the similar niche preferences of the hybrid and parents, we propose hybrid superiority. Our results indicate that the hybrid P. fauriei exhibits greater fitness and can compete with and occupy the initial niches of the maternal P. minor. Consequently, we suggest that the maternal P. minor has experienced a niche shift, elucidating the pattern of niche differentiation in this hybrid group. These findings offer a potential explanation for the frequent occurrence of hybridization in ferns and provide new insights into fern hybrid speciation, enhancing our understanding of fern diversity.


Asunto(s)
Ecosistema , Hibridación Genética , Fenotipo , Pteris , Pteris/fisiología , Pteris/anatomía & histología , Pteris/genética , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo , Especiación Genética , Fotosíntesis/fisiología , Helechos/fisiología , Helechos/anatomía & histología , Adaptación Fisiológica
16.
J Clin Anesth ; 95: 111439, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38471194

RESUMEN

STUDY OBJECTIVE: To determine the sex-specific associations between postoperative haemoglobin and mortality or complications reflecting ischaemia or inadequate oxygen supply after major noncardiac surgery. DESIGN: A retrospective cohort study with prospective validation. SETTING: A large university hospital health system in China. PATIENTS: Men and women undergoing elective major noncardiac surgery. INTERVENTIONS AND MEASUREMENTS: The primary exposure was nadir haemoglobin within 48 h after surgery. The outcome of interest was a composite of postoperative mortality or ischaemic events including myocardial injury, acute kidney injury and stroke within hospitalisation. MAIN RESULTS: The study included 26,049 patients (15,757 men and 10,292 women). Low postoperative haemoglobin was a strong predictor of the composite outcome in both sexes, with the risk progressively increasing as the nadir haemoglobin concentration dropped below 130 g l-1 in men and 120 g l-1 in women (adjusted odds ratio [OR] 1.43, 95% CI 1.37-1.50 in men, and OR 1.45, 95% CI 1.35-1.55 in women, per 10 g l-1 decrease in postoperative nadir haemoglobin). Above these sex-specific thresholds, the change of nadir haemoglobin was no longer associated with odds of the composite outcome in either men or women. There was no significant interaction between patient sex and the association between postoperative haemoglobin and the composite outcome (Pinteraction = 0.673). Validation in an external prospective cohort (n = 2120) with systematic postoperative troponin and creatinine measurement confirmed our findings. CONCLUSIONS: Postoperative haemoglobin levels following major noncardiac surgery were nonlinearly associated with ischaemic complications or mortality, without any clinically important interaction with patient sex.


Asunto(s)
Anemia , Hemoglobinas , Complicaciones Posoperatorias , Humanos , Masculino , Femenino , Hemoglobinas/análisis , Persona de Mediana Edad , Anemia/etiología , Anemia/epidemiología , Anemia/sangre , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/sangre , Estudios Retrospectivos , Anciano , Factores Sexuales , China/epidemiología , Estudios Prospectivos , Estudios de Cohortes , Adulto , Lesión Renal Aguda/etiología , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/sangre , Procedimientos Quirúrgicos Electivos/efectos adversos , Procedimientos Quirúrgicos Operativos/efectos adversos , Isquemia/etiología , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/epidemiología
17.
J Biomed Sci ; 31(1): 30, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38500170

RESUMEN

BACKGROUND: Acute lung injury (ALI) is a life-threatening respiratory condition characterized by severe inflammation and lung tissue damage, frequently causing rapid respiratory failure and long-term complications. The microRNA let-7a-5p is involved in the progression of lung injury, inflammation, and fibrosis by regulating immune cell activation and cytokine production. This study aims to use an innovative cellular electroporation platform to generate extracellular vesicles (EVs) carring let-7a-5p (EV-let-7a-5p) derived from transfected Wharton's jelly-mesenchymal stem cells (WJ-MSCs) as a potential gene therapy for ALI. METHODS: A cellular nanoporation (CNP) method was used to induce the production and release of EV-let-7a-5p from WJ-MSCs transfected with the relevant plasmid DNA. EV-let-7a-5p in the conditioned medium were isolated using a tangential flow filtration (TFF) system. EV characterization followed the minimal consensus guidelines outlined by the International Society for Extracellular Vesicles. We conducted a thorough set of therapeutic assessments, including the antifibrotic effects using a transforming growth factor beta (TGF-ß)-induced cell model, the modulation effects on macrophage polarization, and the influence of EV-let-7a-5p in a rat model of hyperoxia-induced ALI. RESULTS: The CNP platform significantly increased EV secretion from transfected WJ-MSCs, and the encapsulated let-7a-5p in engineered EVs was markedly higher than that in untreated WJ-MSCs. These EV-let-7a-5p did not influence cell proliferation and effectively mitigated the TGF-ß-induced fibrotic phenotype by downregulating SMAD2/3 phosphorylation in LL29 cells. Furthermore, EV-let-7a-5p regulated M2-like macrophage activation in an inflammatory microenvironment and significantly induced interleukin (IL)-10 secretion, demonstrating their modulatory effect on inflammation. Administering EVs from untreated WJ-MSCs slightly improved lung function and increased let-7a-5p expression in plasma in the hyperoxia-induced ALI rat model. In comparison, EV-let-7a-5p significantly reduced macrophage infiltration and collagen deposition while increasing IL-10 expression, causing a substantial improvement in lung function. CONCLUSION: This study reveals that the use of the CNP platform to stimulate and transfect WJ-MSCs could generate an abundance of let-7a-5p-enriched EVs, which underscores the therapeutic potential in countering inflammatory responses, fibrotic activation, and hyperoxia-induced lung injury. These results provide potential avenues for developing innovative therapeutic approaches for more effective interventions in ALI.


Asunto(s)
Lesión Pulmonar Aguda , Vesículas Extracelulares , Hiperoxia , MicroARNs , Ratas , Animales , Células Cultivadas , Hiperoxia/metabolismo , Inflamación , MicroARNs/genética , MicroARNs/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Vesículas Extracelulares/fisiología , Fibrosis , Lesión Pulmonar Aguda/terapia , Lesión Pulmonar Aguda/metabolismo
18.
J Imaging Inform Med ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499706

RESUMEN

Bronchopulmonary dysplasia (BPD) is common in preterm infants and may result in pulmonary vascular disease, compromising lung function. This study aimed to employ artificial intelligence (AI) techniques to help physicians accurately diagnose BPD in preterm infants in a timely and efficient manner. This retrospective study involves two datasets: a lung region segmentation dataset comprising 1491 chest radiographs of infants, and a BPD prediction dataset comprising 1021 chest radiographs of preterm infants. Transfer learning of a pre-trained machine learning model was employed for lung region segmentation and image fusion for BPD prediction to enhance the performance of the AI model. The lung segmentation model uses transfer learning to achieve a dice score of 0.960 for preterm infants with ≤ 168 h postnatal age. The BPD prediction model exhibited superior diagnostic performance compared to that of experts and demonstrated consistent performance for chest radiographs obtained at ≤ 24 h postnatal age, and those obtained at 25 to 168 h postnatal age. This study is the first to use deep learning on preterm chest radiographs for lung segmentation to develop a BPD prediction model with an early detection time of less than 24 h. Additionally, this study compared the model's performance according to both NICHD and Jensen criteria for BPD. Results demonstrate that the AI model surpasses the diagnostic accuracy of experts in predicting lung development in preterm infants.

19.
Zhongguo Zhong Yao Za Zhi ; 49(1): 70-79, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403340

RESUMEN

Flavonoid C-glycosides are a class of natural products that are widely involved in plant defense responses and have diverse pharmacological activities. They are also important active ingredients of Dendrobium huoshanense. Flavanone synthase Ⅱ has been proven to be a key enzyme in the synthesis pathway of flavonoid C-glycosides in plants, and their catalytic product 2-hydroxyflavanone is the precursor compound for the synthesis of various reported flavonoid C-glycosides. In this study, based on the reported amino acid sequence of flavanone synthase Ⅱ, a flavanone synthase Ⅱ gene(DhuFNSⅡ) was screened and verified from the constructed D. huoshanense genome localization database. Functional validation of the enzyme showed that it could in vitro catalyze naringenin and pinocembrin to produce apigenin and chrysin, respectively. The open reading frame(ORF) of DhuFNSⅡ was 1 644 bp in length, encoding 547 amino acids. Subcellular localization showed that the protein was localized on the endoplasmic reticulum. RT-qPCR results showed that DhuFNSⅡ had the highest expression in stems, followed by leaves and roots. The expression levels of DhuFNSⅡ and other target genes in various tissues of D. huoshanense were significantly up-regulated after four kinds of abiotic stresses commonly encountered in the growth process, but the extent of up-regulation varied among treatment groups, with drought and cold stress having more significant effects on gene expression levels. Through the identification and functional analysis of DhuFNSⅡ, this study is expected to contribute to the elucidation of the molecular mechanism of the formation of quality metabolites of D. huoshanense, flavonoid C-glycosides, and provide a reference for its quality formation and scientific cultivation.


Asunto(s)
Dendrobium , Flavanonas , Dendrobium/genética , Dendrobium/química , Flavanonas/metabolismo , Flavonoides , Clonación Molecular , Glicósidos/metabolismo
20.
Environ Res ; 249: 118431, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38346481

RESUMEN

Plant uptake, accumulation, and transformation of organophosphate esters (OPEs) play vital roles in their geochemical cycles and exposure risks. Here we reviewed the recent research advances in OPEs in plants. The mean OPE concentrations based on dry/wet/lipid weight varied in 4.80-3,620/0.287-26.8/12,000-315,000 ng g-1 in field plants, and generally showed positive correlations with those in plant habitats. OPEs with short-chain substituents and high hydrophilicity, particularly the commonly used chlorinated OPEs, showed dominance in most plant samples, whereas some tree barks, fruits, seeds, and roots demonstrated dominance of hydrophobic OPEs. Both hydrophilic and hydrophobic OPEs can enter plants via root and foliar uptake, and the former pathway is mainly passively mediated by various membrane proteins. After entry, different OPEs undergo diverse subcellular distributions and acropetal/basipetal/intergenerational translocations, depending on their physicochemical properties. Hydrophilic OPEs mainly exist in cell sap and show strong transferability, hydrophobic OPEs demonstrate dominant distributions in cell wall and limited migrations owing to the interception of Casparian strips and cell wall. Additionally, plant species, transpiration capacity, growth stages, commensal microorganisms, and habitats also affect OPE uptake and transfer in plants. OPE metabolites derived from various Phase I transformations and Phase II conjugations are increasingly identified in plants, and hydrolysis and hydroxylation are the most common metabolic processes. The metabolisms and products of OPEs are closely associated with their structures and degradation resistance and plant species. In contrast, plant-derived food consumption contributes considerably to the total dietary intakes of OPEs by human, particularly the cereals, and merits specifical attention. Based on the current research limitations, we proposed the research perspectives regarding OPEs in plants, with the emphases on their behavior and fate in field plants, interactions with plant-related microorganisms, multiple uptake pathways and mechanisms, and comprehensive screening analysis and risk evaluation.


Asunto(s)
Plantas , Humanos , Plantas/metabolismo , Ésteres/metabolismo , Organofosfatos/metabolismo , Contaminantes Ambientales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA