Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39000806

RESUMEN

This study investigates lightweight and efficient candidates for sound absorption to address the growing demand for sustainable and eco-friendly materials in noise attenuation. Juncus effusus (JE) is a natural fiber known for its unique three-dimensional network, providing a viable and sustainable filler for enhanced sound absorption in honeycomb panels. Microperforated-panel (MPP) honeycomb absorbers incorporating JE fillers were fabricated and designed, focusing on optimizing the absorber designs by varying JE filler densities, geometrical arrangements, and MPP parameters. At optimal filling densities, the MPP-type honeycomb structures filled with JE fibers achieved high noise reduction coefficients (NRC) of 0.5 and 0.7 at 20 mm and 50 mm thicknesses, respectively. Using an analytical model and an artificial neural network (ANN) model, the sound absorption characteristics of these absorbers were successfully predicted. This study demonstrates the potential of JE fibers in improving noise mitigation strategies across different industries, offering more sustainable and efficient solutions for construction and transportation.

2.
Adv Mater ; : e2401920, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011802

RESUMEN

Responsive materials and actuators are the basis for the development of various leading-edge technologies but have so far mostly been designed based on polymers, incurring key limitations related to sensitivity and environmental tolerance. This work reports a new responsive material, laser-printed carbon film (LPCF), produced via direct laser transformation of a liquid organic precursor and consists of graphitic and amorphous carbons. The high activity of amorphous carbon combined with the dual-gradient structure enables the LPCF to have a actuation speed of 9400° s-1 in response to the stimulus of organic vapor. LPCF exhibits a conductivity of 950 S m-1 and excellent resistance to various extreme environmental conditions, which are unachievable for polymer-based materials. Additionally, an LPCF-based all-carbon soft robot that can mimic the complex continuous backward somersaulting motions without manual intervention is constructed. The locomotion velocity of the robot reaches a value of 1.19 BL s-1, which is almost one to two orders of magnitude faster than that of reported soft robots. This work not only offers a new paradigm for highly responsive materials but also provides a great design and engineering example for the next generation of biomimetic robots with life-like performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA