Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5006, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866738

RESUMEN

Body mass results from a complex interplay between genetics and environment. Previous studies of the genetic contribution to body mass have excluded repetitive regions due to the technical limitations of platforms used for population scale studies. Here we apply genome-wide approaches, identifying an association between adult body mass and the copy number (CN) of 47S-ribosomal DNA (rDNA). rDNA codes for the 18 S, 5.8 S and 28 S ribosomal RNA (rRNA) components of the ribosome. In mammals, there are hundreds of copies of these genes. Inter-individual variation in the rDNA CN has not previously been associated with a mammalian phenotype. Here, we show that rDNA CN variation associates with post-pubertal growth rate in rats and body mass index in adult humans. rDNA CN is not associated with rRNA transcription rates in adult tissues, suggesting the mechanistic link occurs earlier in development. This aligns with the observation that the association emerges by early adulthood.


Asunto(s)
Índice de Masa Corporal , Variaciones en el Número de Copia de ADN , ADN Ribosómico , Animales , Humanos , ADN Ribosómico/genética , Masculino , Ratas , Femenino , Adulto , Mamíferos/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo
2.
Genome Biol ; 23(1): 54, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35164830

RESUMEN

BACKGROUND: Ribosomal DNA (rDNA) displays substantial inter-individual genetic variation in human and mouse. A systematic analysis of how this variation impacts epigenetic states and expression of the rDNA has thus far not been performed. RESULTS: Using a combination of long- and short-read sequencing, we establish that 45S rDNA units in the C57BL/6J mouse strain exist as distinct genetic haplotypes that influence the epigenetic state and transcriptional output of any given unit. DNA methylation dynamics at these haplotypes are dichotomous and life-stage specific: at one haplotype, the DNA methylation state is sensitive to the in utero environment, but refractory to post-weaning influences, whereas other haplotypes entropically gain DNA methylation during aging only. On the other hand, individual rDNA units in human show limited evidence of genetic haplotypes, and hence little discernible correlation between genetic and epigenetic states. However, in both species, adjacent units show similar epigenetic profiles, and the overall epigenetic state at rDNA is strongly positively correlated with the total rDNA copy number. Analysis of different mouse inbred strains reveals that in some strains, such as 129S1/SvImJ, the rDNA copy number is only approximately 150 copies per diploid genome and DNA methylation levels are < 5%. CONCLUSIONS: Our work demonstrates that rDNA-associated genetic variation has a considerable influence on rDNA epigenetic state and consequently rRNA expression outcomes. In the future, it will be important to consider the impact of inter-individual rDNA (epi)genetic variation on mammalian phenotypes and diseases.


Asunto(s)
Metilación de ADN , ARN Ribosómico , Animales , ADN Ribosómico/genética , Epigénesis Genética , Variación Genética , Humanos , Mamíferos/genética , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico/genética , ARN Ribosómico/metabolismo
3.
Aging (Albany NY) ; 12(5): 4394-4406, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32126024

RESUMEN

The naked mole-rat, Heterocephalus glaber (NMR), the longest-lived rodent, is of significance and interest in the study of biomarkers for ageing. Recent breakthroughs in this field have revealed 'epigenetic clocks' that are based on the temporal accumulation of DNA methylation at specific genomic sites. Here, we validate the hypothesis of an epigenetic clock in NMRs based on changes in methylation of targeted CpG sites. We initially analysed 51 CpGs in NMR livers spanning an age range of 39-1,144 weeks and found 23 to be significantly associated with age (p<0.05). We then built a predictor of age using these sites. To test the accuracy of this model, we analysed an additional set of liver samples, and were successfully able to predict their age with a root mean squared error of 166 weeks. We also profiled skin samples with the same age range, finding a striking correlation between their predicted age versus their actual age (R=0.93), but which was lower when compared to the liver, suggesting that skin ages slower than the liver in NMRs. Our model will enable the prediction of age in wild-caught and captive NMRs of unknown age, and will be invaluable for further mechanistic studies of mammalian ageing.


Asunto(s)
Envejecimiento/genética , Islas de CpG/genética , Metilación de ADN , Envejecimiento/metabolismo , Animales , Hígado/metabolismo , Ratas Topo , Piel/metabolismo
4.
Brain Commun ; 2(2): fcaa153, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33543135

RESUMEN

Adult hippocampal neurogenesis is involved in stress-related disorders such as depression, posttraumatic stress disorders, as well as in the mechanism of antidepressant effects. However, the molecular mechanisms involved in these associations remain to be fully explored. In this study, unpredictable chronic mild stress in mice resulted in a deficit in neuronal dendritic tree development and neuroblast migration in the hippocampal neurogenic niche. To investigate molecular pathways underlying neurogenesis alteration, genome-wide gene expression changes were assessed in the prefrontal cortex, hippocampus and the hypothalamus alongside neurogenesis changes. Cluster analysis showed that the transcriptomic signature of chronic stress is much more prominent in the prefrontal cortex compared to the hippocampus and the hypothalamus. Pathway analyses suggested huntingtin, leptin, myelin regulatory factor, methyl-CpG binding protein and brain-derived neurotrophic factor as the top predicted upstream regulators of transcriptomic changes in the prefrontal cortex. Involvement of the satiety regulating pathways (leptin) was corroborated by behavioural data showing increased food reward motivation in stressed mice. Behavioural and gene expression data also suggested circadian rhythm disruption and activation of circadian clock genes such as Period 2. Interestingly, most of these pathways have been previously shown to be involved in the regulation of adult hippocampal neurogenesis. It is possible that activation of these pathways in the prefrontal cortex by chronic stress indirectly affects neuronal differentiation and migration in the hippocampal neurogenic niche via reciprocal connections between the two brain areas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA