Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Pers Med ; 14(10)2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39452554

RESUMEN

BACKGROUND/OBJECTIVES: Apparent Diffusion Coefficient (ADC) maps in prostate MRI can reveal tumor characteristics, but their accuracy can be compromised by artifacts related with patient motion or rectal gas associated distortions. To address these challenges, we propose a novel approach that utilizes a Generative Adversarial Network to synthesize ADC maps from T2-weighted magnetic resonance images (T2W MRI). METHODS: By leveraging contrastive learning, our model accurately maps axial T2W MRI to ADC maps within the cropped region of the prostate organ boundary, capturing subtle variations and intricate structural details by learning similar and dissimilar pairs from two imaging modalities. We trained our model on a comprehensive dataset of unpaired T2-weighted images and ADC maps from 506 patients. In evaluating our model, named AI-ADC, we compared it against three state-of-the-art methods: CycleGAN, CUT, and StyTr2. RESULTS: Our model demonstrated a higher mean Structural Similarity Index (SSIM) of 0.863 on a test dataset of 3240 2D MRI slices from 195 patients, compared to values of 0.855, 0.797, and 0.824 for CycleGAN, CUT, and StyTr2, respectively. Similarly, our model achieved a significantly lower Fréchet Inception Distance (FID) value of 31.992, compared to values of 43.458, 179.983, and 58.784 for the other three models, indicating its superior performance in generating ADC maps. Furthermore, we evaluated our model on 147 patients from the publicly available ProstateX dataset, where it demonstrated a higher SSIM of 0.647 and a lower FID of 113.876 compared to the other three models. CONCLUSIONS: These results highlight the efficacy of our proposed model in generating ADC maps from T2W MRI, showcasing its potential for enhancing clinical diagnostics and radiological workflows.

2.
Radiol Imaging Cancer ; 6(6): e240050, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39400232

RESUMEN

Purpose To evaluate the performance of an artificial intelligence (AI) model in detecting overall and clinically significant prostate cancer (csPCa)-positive lesions on paired external and in-house biparametric MRI (bpMRI) scans and assess performance differences between each dataset. Materials and Methods This single-center retrospective study included patients who underwent prostate MRI at an external institution and were rescanned at the authors' institution between May 2015 and May 2022. A genitourinary radiologist performed prospective readouts on in-house MRI scans following the Prostate Imaging Reporting and Data System (PI-RADS) version 2.0 or 2.1 and retrospective image quality assessments for all scans. A subgroup of patients underwent an MRI/US fusion-guided biopsy. A bpMRI-based lesion detection AI model previously developed using a completely separate dataset was tested on both MRI datasets. Detection rates were compared between external and in-house datasets with use of the paired comparison permutation tests. Factors associated with AI detection performance were assessed using multivariable generalized mixed-effects models, incorporating features selected through forward stepwise regression based on the Akaike information criterion. Results The study included 201 male patients (median age, 66 years [IQR, 62-70 years]; prostate-specific antigen density, 0.14 ng/mL2 [IQR, 0.10-0.22 ng/mL2]) with a median interval between external and in-house MRI scans of 182 days (IQR, 97-383 days). For intraprostatic lesions, AI detected 39.7% (149 of 375) on external and 56.0% (210 of 375) on in-house MRI scans (P < .001). For csPCa-positive lesions, AI detected 61% (54 of 89) on external and 79% (70 of 89) on in-house MRI scans (P < .001). On external MRI scans, better overall lesion detection was associated with a higher PI-RADS score (odds ratio [OR] = 1.57; P = .005), larger lesion diameter (OR = 3.96; P < .001), better diffusion-weighted MRI quality (OR = 1.53; P = .02), and fewer lesions at MRI (OR = 0.78; P = .045). Better csPCa detection was associated with a shorter MRI interval between external and in-house scans (OR = 0.58; P = .03) and larger lesion size (OR = 10.19; P < .001). Conclusion The AI model exhibited modest performance in identifying both overall and csPCa-positive lesions on external bpMRI scans. Keywords: MR Imaging, Urinary, Prostate Supplemental material is available for this article. © RSNA, 2024.


Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Magnética , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Estudios Retrospectivos , Anciano , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Algoritmos , Próstata/diagnóstico por imagen , Próstata/patología , Interpretación de Imagen Asistida por Computador/métodos , Biopsia Guiada por Imagen/métodos
3.
Acad Radiol ; 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39426916

RESUMEN

RATIONALE AND OBJECTIVES: The increasing use of focal therapy (FT) in localized prostate cancer (PCa) management requires a standardized MRI interpretation system to detect recurrent clinically significant PCa (csPCa). This pilot study evaluates the novel Transatlantic Recommendations for Prostate Gland Evaluation with MRI after Focal Therapy (TARGET) and compares its performance to that of the Prostate Imaging after Focal Ablation (PI-FAB) system. MATERIALS AND METHODS: This retrospective study included 38 patients who underwent primary FT for localized PCa, with follow-up multiparametric MRI (mpMRI) and biopsy. Two radiologists assessed the mpMRIs using both PI-FAB and TARGET independently. Diagnostic performance metrics and area under the receiver operating characteristic curve (AUC) were calculated. Inter-reader and intrareader agreement were assessed using Cohen's κ and Kendall's τ. RESULTS: 14 patients had recurrent csPCa. PI-FAB showed high sensitivity (92.9% for both readers) and NPV (reader 1: 93.8%, reader 2: 92.9%) but moderate specificity (reader 1: 62.5%, reader 2: 54.2%). TARGET demonstrated lower sensitivity for one reader (reader 1: 78.6%, reader 2: 92.9%) but higher specificity (reader 1: 79.2%, reader 2: 62.5%) for both readers. Both systems displayed moderate inter-reader agreement (κ = 0.56 for PI-FAB, 0.57 for TARGET). CONCLUSION: PI-FAB and TARGET exhibit similar performances in post-FT MRI. While PI-FAB had consistently high sensitivity, TARGET offered higher specificity for one reader. Moderate agreement levels demonstrate the viability of these systems in clinical settings and a promise for improvement.

4.
Abdom Radiol (NY) ; 49(8): 2891-2901, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38958754

RESUMEN

OBJECTIVE: To assess impact of image quality on prostate cancer extraprostatic extension (EPE) detection on MRI using a deep learning-based AI algorithm. MATERIALS AND METHODS: This retrospective, single institution study included patients who were imaged with mpMRI and subsequently underwent radical prostatectomy from June 2007 to August 2022. One genitourinary radiologist prospectively evaluated each patient using the NCI EPE grading system. Each T2WI was classified as low- or high-quality by a previously developed AI algorithm. Fisher's exact tests were performed to compare EPE detection metrics between low- and high-quality images. Univariable and multivariable analyses were conducted to assess the predictive value of image quality for pathological EPE. RESULTS: A total of 773 consecutive patients (median age 61 [IQR 56-67] years) were evaluated. At radical prostatectomy, 23% (180/773) of patients had EPE at pathology, and 41% (131/318) of positive EPE calls on mpMRI were confirmed to have EPE. The AI algorithm classified 36% (280/773) of T2WIs as low-quality and 64% (493/773) as high-quality. For EPE grade ≥ 1, high-quality T2WI significantly improved specificity for EPE detection (72% [95% CI 67-76%] vs. 63% [95% CI 56-69%], P = 0.03), but did not significantly affect sensitivity (72% [95% CI 62-80%] vs. 75% [95% CI 63-85%]), positive predictive value (44% [95% CI 39-49%] vs. 38% [95% CI 32-43%]), or negative predictive value (89% [95% CI 86-92%] vs. 89% [95% CI 85-93%]). Sensitivity, specificity, PPV, and NPV for EPE grades ≥ 2 and ≥ 3 did not show significant differences attributable to imaging quality. For NCI EPE grade 1, high-quality images (OR 3.05, 95% CI 1.54-5.86; P < 0.001) demonstrated a stronger association with pathologic EPE than low-quality images (OR 1.76, 95% CI 0.63-4.24; P = 0.24). CONCLUSION: Our study successfully employed a deep learning-based AI algorithm to classify image quality of prostate MRI and demonstrated that better quality T2WI was associated with more accurate prediction of EPE at final pathology.


Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Magnética , Prostatectomía , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Imagen por Resonancia Magnética/métodos , Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Clasificación del Tumor
6.
Radiology ; 311(2): e230750, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38713024

RESUMEN

Background Multiparametric MRI (mpMRI) improves prostate cancer (PCa) detection compared with systematic biopsy, but its interpretation is prone to interreader variation, which results in performance inconsistency. Artificial intelligence (AI) models can assist in mpMRI interpretation, but large training data sets and extensive model testing are required. Purpose To evaluate a biparametric MRI AI algorithm for intraprostatic lesion detection and segmentation and to compare its performance with radiologist readings and biopsy results. Materials and Methods This secondary analysis of a prospective registry included consecutive patients with suspected or known PCa who underwent mpMRI, US-guided systematic biopsy, or combined systematic and MRI/US fusion-guided biopsy between April 2019 and September 2022. All lesions were prospectively evaluated using Prostate Imaging Reporting and Data System version 2.1. The lesion- and participant-level performance of a previously developed cascaded deep learning algorithm was compared with histopathologic outcomes and radiologist readings using sensitivity, positive predictive value (PPV), and Dice similarity coefficient (DSC). Results A total of 658 male participants (median age, 67 years [IQR, 61-71 years]) with 1029 MRI-visible lesions were included. At histopathologic analysis, 45% (294 of 658) of participants had lesions of International Society of Urological Pathology (ISUP) grade group (GG) 2 or higher. The algorithm identified 96% (282 of 294; 95% CI: 94%, 98%) of all participants with clinically significant PCa, whereas the radiologist identified 98% (287 of 294; 95% CI: 96%, 99%; P = .23). The algorithm identified 84% (103 of 122), 96% (152 of 159), 96% (47 of 49), 95% (38 of 40), and 98% (45 of 46) of participants with ISUP GG 1, 2, 3, 4, and 5 lesions, respectively. In the lesion-level analysis using radiologist ground truth, the detection sensitivity was 55% (569 of 1029; 95% CI: 52%, 58%), and the PPV was 57% (535 of 934; 95% CI: 54%, 61%). The mean number of false-positive lesions per participant was 0.61 (range, 0-3). The lesion segmentation DSC was 0.29. Conclusion The AI algorithm detected cancer-suspicious lesions on biparametric MRI scans with a performance comparable to that of an experienced radiologist. Moreover, the algorithm reliably predicted clinically significant lesions at histopathologic examination. ClinicalTrials.gov Identifier: NCT03354416 © RSNA, 2024 Supplemental material is available for this article.


Asunto(s)
Aprendizaje Profundo , Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Anciano , Estudios Prospectivos , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Persona de Mediana Edad , Algoritmos , Próstata/diagnóstico por imagen , Próstata/patología , Biopsia Guiada por Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos
7.
Clin Nucl Med ; 49(7): 630-636, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651785

RESUMEN

PURPOSE: Prostate-specific membrane antigen (PSMA)-targeting PET radiotracers reveal physiologic uptake in the urinary system, potentially misrepresenting activity in the prostatic urethra as an intraprostatic lesion. This study examined the correlation between midline 18 F-DCFPyL activity in the prostate and hyperintensity on T2-weighted (T2W) MRI as an indication of retained urine in the prostatic urethra. PATIENTS AND METHODS: Eighty-five patients who underwent both 18 F-DCFPyL PSMA PET/CT and prostate MRI between July 2017 and September 2023 were retrospectively analyzed for midline radiotracer activity and retained urine on postvoid T2W MRIs. Fisher's exact tests and unpaired t tests were used to compare residual urine presence and prostatic urethra measurements between patients with and without midline radiotracer activity. The influence of anatomical factors including prostate volume and urethral curvature on urinary stagnation was also explored. RESULTS: Midline activity on PSMA PET imaging was seen in 14 patients included in the case group, whereas the remaining 71 with no midline activity constituted the control group. A total of 71.4% (10/14) and 29.6% (21/71) of patients in the case and control groups had urethral hyperintensity on T2W MRI, respectively ( P < 0.01). Patients in the case group had significantly larger mean urethral dimensions, larger prostate volumes, and higher incidence of severe urethral curvature compared with the controls. CONCLUSIONS: Stagnated urine within the prostatic urethra is a potential confounding factor on PSMA PET scans. Integrating PET imaging with T2W MRI can mitigate false-positive calls, especially as PSMA PET/CT continues to gain traction in diagnosing localized prostate cancer.


Asunto(s)
Imagen por Resonancia Magnética , Tomografía Computarizada por Tomografía de Emisión de Positrones , Uretra , Humanos , Masculino , Reacciones Falso Positivas , Anciano , Uretra/diagnóstico por imagen , Persona de Mediana Edad , Estudios Retrospectivos , Lisina/análogos & derivados , Próstata/diagnóstico por imagen , Urea/análogos & derivados , Urea/farmacocinética , Glutamato Carboxipeptidasa II , Neoplasias de la Próstata/diagnóstico por imagen , Antígenos de Superficie , Anciano de 80 o más Años
8.
Acad Radiol ; 31(10): 4096-4106, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38670874

RESUMEN

RATIONALE AND OBJECTIVES: Extraprostatic extension (EPE) is well established as a significant predictor of prostate cancer aggression and recurrence. Accurate EPE assessment prior to radical prostatectomy can impact surgical approach. We aimed to utilize a deep learning-based AI workflow for automated EPE grading from prostate T2W MRI, ADC map, and High B DWI. MATERIAL AND METHODS: An expert genitourinary radiologist conducted prospective clinical assessments of MRI scans for 634 patients and assigned risk for EPE using a grading technique. The training set and held-out independent test set consisted of 507 patients and 127 patients, respectively. Existing deep-learning AI models for prostate organ and lesion segmentation were leveraged to extract area and distance features for random forest classification models. Model performance was evaluated using balanced accuracy, ROC AUCs for each EPE grade, as well as sensitivity, specificity, and accuracy compared to EPE on histopathology. RESULTS: A balanced accuracy score of .390 ± 0.078 was achieved using a lesion detection probability threshold of 0.45 and distance features. Using the test set, ROC AUCs for AI-assigned EPE grades 0-3 were 0.70, 0.65, 0.68, and 0.55 respectively. When using EPE≥ 1 as the threshold for positive EPE, the model achieved a sensitivity of 0.67, specificity of 0.73, and accuracy of 0.72 compared to radiologist sensitivity of 0.81, specificity of 0.62, and accuracy of 0.66 using histopathology as the ground truth. CONCLUSION: Our AI workflow for assigning imaging-based EPE grades achieves an accuracy for predicting histologic EPE approaching that of physicians. This automated workflow has the potential to enhance physician decision-making for assessing the risk of EPE in patients undergoing treatment for prostate cancer due to its consistency and automation.


Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Magnética , Clasificación del Tumor , Neoplasias de la Próstata , Sensibilidad y Especificidad , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Persona de Mediana Edad , Anciano , Interpretación de Imagen Asistida por Computador/métodos , Prostatectomía , Bosques Aleatorios
9.
Abdom Radiol (NY) ; 49(5): 1545-1556, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38512516

RESUMEN

OBJECTIVE: Automated methods for prostate segmentation on MRI are typically developed under ideal scanning and anatomical conditions. This study evaluates three different prostate segmentation AI algorithms in a challenging population of patients with prior treatments, variable anatomic characteristics, complex clinical history, or atypical MRI acquisition parameters. MATERIALS AND METHODS: A single institution retrospective database was queried for the following conditions at prostate MRI: prior prostate-specific oncologic treatment, transurethral resection of the prostate (TURP), abdominal perineal resection (APR), hip prosthesis (HP), diversity of prostate volumes (large ≥ 150 cc, small ≤ 25 cc), whole gland tumor burden, magnet strength, noted poor quality, and various scanners (outside/vendors). Final inclusion criteria required availability of axial T2-weighted (T2W) sequence and corresponding prostate organ segmentation from an expert radiologist. Three previously developed algorithms were evaluated: (1) deep learning (DL)-based model, (2) commercially available shape-based model, and (3) federated DL-based model. Dice Similarity Coefficient (DSC) was calculated compared to expert. DSC by model and scan factors were evaluated with Wilcox signed-rank test and linear mixed effects (LMER) model. RESULTS: 683 scans (651 patients) met inclusion criteria (mean prostate volume 60.1 cc [9.05-329 cc]). Overall DSC scores for models 1, 2, and 3 were 0.916 (0.707-0.971), 0.873 (0-0.997), and 0.894 (0.025-0.961), respectively, with DL-based models demonstrating significantly higher performance (p < 0.01). In sub-group analysis by factors, Model 1 outperformed Model 2 (all p < 0.05) and Model 3 (all p < 0.001). Performance of all models was negatively impacted by prostate volume and poor signal quality (p < 0.01). Shape-based factors influenced DL models (p < 0.001) while signal factors influenced all (p < 0.001). CONCLUSION: Factors affecting anatomical and signal conditions of the prostate gland can adversely impact both DL and non-deep learning-based segmentation models.


Asunto(s)
Algoritmos , Inteligencia Artificial , Imagen por Resonancia Magnética , Neoplasias de la Próstata , Humanos , Masculino , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/patología , Interpretación de Imagen Asistida por Computador/métodos , Persona de Mediana Edad , Anciano , Próstata/diagnóstico por imagen , Aprendizaje Profundo
10.
Eur Urol Open Sci ; 62: 74-80, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38468864

RESUMEN

Background and objective: Focal therapy (FT) is increasingly recognized as a promising approach for managing localized prostate cancer (PCa), notably reducing treatment-related morbidities. However, post-treatment anatomical changes present significant challenges for surveillance using current imaging techniques. This study aimed to evaluate the inter-reader agreement and efficacy of the Prostate Imaging after Focal Ablation (PI-FAB) scoring system in detecting clinically significant prostate cancer (csPCa) on post-FT multiparametric magnetic resonance imaging (mpMRI). Methods: A retrospective cohort study was conducted involving patients who underwent primary FT for localized csPCa between 2013 and 2023, followed by post-FT mpMRI and a prostate biopsy. Two expert genitourinary radiologists retrospectively evaluated post-FT mpMRI using PI-FAB. The key measures included inter-reader agreement of PI-FAB scores, assessed by quadratic weighted Cohen's kappa (κ), and the system's efficacy in predicting in-field recurrence of csPCa, with a PI-FAB score cutoff of 3. Additional diagnostic metrics including sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and overall accuracy were also evaluated. Key findings and limitations: Scans from 38 patients were analyzed, revealing a moderate level of agreement in PI-FAB scoring (κ = 0.56). Both radiologists achieved sensitivity of 93% in detecting csPCa, although specificity, PPVs, NPVs, and accuracy varied. Conclusions and clinical implications: The PI-FAB scoring system exhibited high sensitivity with moderate inter-reader agreement in detecting in-field recurrence of csPCa. Despite promising results, its low specificity and PPV necessitate further refinement. These findings underscore the need for larger studies to validate the clinical utility of PI-FAB, potentially aiding in standardizing post-treatment surveillance. Patient summary: Focal therapy has emerged as a promising approach for managing localized prostate cancer, but limitations in current imaging techniques present significant challenges for post-treatment surveillance. The Prostate Imaging after Focal Ablation (PI-FAB) scoring system showed high sensitivity for detecting in-field recurrence of clinically significant prostate cancer. However, its low specificity and positive predictive value necessitate further refinement. Larger, more comprehensive studies are needed to fully validate its clinical utility.

11.
Acad Radiol ; 31(6): 2424-2433, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38262813

RESUMEN

RATIONALE AND OBJECTIVES: Efficiently detecting and characterizing metastatic bone lesions on staging CT is crucial for prostate cancer (PCa) care. However, it demands significant expert time and additional imaging such as PET/CT. We aimed to develop an ensemble of two automated deep learning AI models for 1) bone lesion detection and segmentation and 2) benign vs. metastatic lesion classification on staging CTs and to compare its performance with radiologists. MATERIALS AND METHODS: This retrospective study developed two AI models using 297 staging CT scans (81 metastatic) with 4601 benign and 1911 metastatic lesions in PCa patients. Metastases were validated by follow-up scans, bone biopsy, or PET/CT. Segmentation AI (3DAISeg) was developed using the lesion contours delineated by a radiologist. 3DAISeg performance was evaluated with the Dice similarity coefficient, and classification AI (3DAIClass) performance on AI and radiologist contours was assessed with F1-score and accuracy. Training/validation/testing data partitions of 70:15:15 were used. A multi-reader study was performed with two junior and two senior radiologists within a subset of the testing dataset (n = 36). RESULTS: In 45 unseen staging CT scans (12 metastatic PCa) with 669 benign and 364 metastatic lesions, 3DAISeg detected 73.1% of metastatic (266/364) and 72.4% of benign lesions (484/669). Each scan averaged 12 extra segmentations (range: 1-31). All metastatic scans had at least one detected metastatic lesion, achieving a 100% patient-level detection. The mean Dice score for 3DAISeg was 0.53 (median: 0.59, range: 0-0.87). The F1 for 3DAIClass was 94.8% (radiologist contours) and 92.4% (3DAISeg contours), with a median false positive of 0 (range: 0-3). Using radiologist contours, 3DAIClass had PPV and NPV rates comparable to junior and senior radiologists: PPV (semi-automated approach AI 40.0% vs. Juniors 32.0% vs. Seniors 50.0%) and NPV (AI 96.2% vs. Juniors 95.7% vs. Seniors 91.9%). When using 3DAISeg, 3DAIClass mimicked junior radiologists in PPV (pure-AI 20.0% vs. Juniors 32.0% vs. Seniors 50.0%) but surpassed seniors in NPV (pure-AI 93.8% vs. Juniors 95.7% vs. Seniors 91.9%). CONCLUSION: Our lesion detection and classification AI model performs on par with junior and senior radiologists in discerning benign and metastatic lesions on staging CTs obtained for PCa.


Asunto(s)
Neoplasias Óseas , Aprendizaje Profundo , Estadificación de Neoplasias , Neoplasias de la Próstata , Tomografía Computarizada por Rayos X , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/secundario , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Anciano , Persona de Mediana Edad , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
12.
AJR Am J Roentgenol ; 222(1): e2329964, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37729551

RESUMEN

BACKGROUND. Precise risk stratification through MRI/ultrasound (US) fusion-guided targeted biopsy (TBx) can guide optimal prostate cancer (PCa) management. OBJECTIVE. The purpose of this study was to compare PI-RADS version 2.0 (v2.0) and PI-RADS version 2.1 (v2.1) in terms of the rates of International Society of Urological Pathology (ISUP) grade group (GG) upgrade and downgrade from TBx to radical prostatectomy (RP). METHODS. This study entailed a retrospective post hoc analysis of patients who underwent 3-T prostate MRI at a single institution from May 2015 to March 2023 as part of three prospective clinical trials. Trial participants who underwent MRI followed by MRI/US fusion-guided TBx and RP within a 1-year interval were identified. A single genitourinary radiologist performed clinical interpretations of the MRI examinations using PI-RADS v2.0 from May 2015 to March 2019 and PI-RADS v2.1 from April 2019 to March 2023. Upgrade and downgrade rates from TBx to RP were compared using chi-square tests. Clinically significant cancer was defined as ISUP GG2 or greater. RESULTS. The final analysis included 308 patients (median age, 65 years; median PSA density, 0.16 ng/mL2). The v2.0 group (n = 177) and v2.1 group (n = 131) showed no significant difference in terms of upgrade rate (29% vs 22%, respectively; p = .15), downgrade rate (19% vs 21%, p = .76), clinically significant upgrade rate (14% vs 10%, p = .27), or clinically significant downgrade rate (1% vs 1%, p > .99). The upgrade rate and downgrade rate were also not significantly different between the v2.0 and v2.1 groups when stratifying by index lesion PI-RADS category or index lesion zone, as well as when assessed only in patients without a prior PCa diagnosis (all p > .01). Among patients with GG2 or GG3 at RP (n = 121 for v2.0; n = 103 for v2.1), the concordance rate between TBx and RP was not significantly different between the v2.0 and v2.1 groups (53% vs 57%, p = .51). CONCLUSION. Upgrade and downgrade rates from TBx to RP were not significantly different between patients whose MRI examinations were clinically interpreted using v2.0 or v2.1. CLINICAL IMPACT. Implementation of the most recent PI-RADS update did not improve the incongruence in PCa grade assessment between TBx and surgery.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Anciano , Neoplasias de la Próstata/patología , Imagen por Resonancia Magnética/métodos , Próstata/patología , Estudios Retrospectivos , Estudios Prospectivos , Biopsia , Prostatectomía/métodos , Biopsia Guiada por Imagen/métodos
13.
Acad Radiol ; 31(4): 1429-1437, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37858505

RESUMEN

RATIONALE AND OBJECTIVES: Prostate MRI quality is essential in guiding prostate biopsies. However, assessment of MRI quality is subjective with variation. Quality degradation sources exert varying impacts based on the sequence under consideration, such as T2W versus DWI. As a result, employing sequence-specific techniques for quality assessment could yield more advantageous outcomes. This study aims to develop an AI tool that offers a more consistent evaluation of T2W prostate MRI quality, efficiently identifying suboptimal scans while minimizing user bias. MATERIALS AND METHODS: This retrospective study included 1046 patients from three cohorts (ProstateX [n = 347], All-comer in-house [n = 602], enriched bad-quality MRI in-house [n = 97]) scanned between January 2011 and May 2022. An expert reader assigned T2W MRIs a quality score. A train-validation-test split of 70:15:15 was applied, ensuring equal distribution of MRI scanners and protocols across all partitions. T2W quality AI classification model was based on 3D DenseNet121 architecture using MONAI framework. In addition to multiclassification, binary classification was utilized (Classes 0/1 vs. 2). A score of 0 was given to scans considered non-diagnostic or unusable, a score of 1 was given to those with acceptable diagnostic quality with some usability but with some quality distortions present, and a score of 2 was given to those considered optimal diagnostic quality and usability. Partial occlusion sensitivity maps were generated for anatomical correlation. Three body radiologists assessed reproducibility within a subgroup of 60 test cases using weighted Cohen Kappa. RESULTS: The best validation multiclass accuracy of 77.1% (121/157) was achieved during training. In the test dataset, multiclassification accuracy was 73.9% (116/157), whereas binary accuracy was 84.7% (133/157). Sub-class sensitivity for binary quality distortion classification for class 0 was 100% (18/18), and sub-class specificity for T2W classification of absence/minimal quality distortions for class 2 was 90.5% (95/105). All three readers showed moderate to substantial agreement with ground truth (R1-R3 κ = 0.588, κ = 0.649, κ = 0.487, respectively), moderate to substantial agreement with each other (R1-R2 κ = 0.599, R1-R3 κ = 0.612, R2-R3 κ = 0.685), fair to moderate agreement with AI (R1-R3 κ = 0.445, κ = 0.410, κ = 0.292, respectively). AI showed substantial agreement with ground truth (κ = 0.704). 3D quality heatmap evaluation revealed that the most critical non-diagnostic quality imaging features from an AI perspective related to obscuration of the rectoprostatic space (94.4%, 17/18). CONCLUSION: The 3D AI model can assess T2W prostate MRI quality with moderate accuracy and translate whole sequence-level classification labels into 3D voxel-level quality heatmaps for interpretation. Image quality has a significant downstream impact on ruling out clinically significant cancers. AI may be able to help with reproducible identification of MRI sequences requiring re-acquisition with explainability.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata , Masculino , Humanos , Próstata/diagnóstico por imagen , Próstata/patología , Estudios Retrospectivos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología
14.
Eur J Radiol ; 170: 111259, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128256

RESUMEN

PURPOSE: To evaluate CycleGAN's ability to enhance T2-weighted image (T2WI) quality. METHOD: A CycleGAN algorithm was used to enhance T2WI quality. 96 patients (192 scans) were identified from patients who underwent multiple axial T2WI due to poor quality on the first attempt (RAD1) and improved quality on re-acquisition (RAD2). CycleGAN algorithm gave DL classifier scores (0-1) for quality quantification and produced enhanced versions of QI1 and QI2 from RAD1 and RAD2, respectively. A subset (n = 20 patients) was selected for a blinded, multi-reader study, where four radiologists rated T2WI on a scale of 1-4 for quality. The multi-reader study presented readers with 60 image pairs (RAD1 vs RAD2, RAD1 vs QI1, and RAD2 vs QI2), allowing for selecting sequence preferences and quantifying the quality changes. RESULTS: The DL classifier correctly discerned 71.9 % of quality classes, with 90.6 % (96/106) as poor quality and 48.8 % (42/86) as diagnostic in original sequences (RAD1, RAD2). CycleGAN images (QI1, QI2) demonstrated quantitative improvements, with consistently higher DL classifier scores than original scans (p < 0.001). In the multi-reader analysis, CycleGAN demonstrated no qualitative improvements, with diminished overall quality and motion in QI2 in most patients compared to RAD2, with noise levels remaining similar (8/20). No readers preferred QI2 to RAD2 for diagnosis. CONCLUSION: Despite quantitative enhancements with CycleGAN, there was no qualitative boost in T2WI diagnostic quality, noise, or motion. Expert radiologists didn't favor CycleGAN images over standard scans, highlighting the divide between quantitative and qualitative metrics.


Asunto(s)
Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Imagen por Resonancia Magnética/métodos
15.
J Magn Reson Imaging ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37811666

RESUMEN

BACKGROUND: Image quality evaluation of prostate MRI is important for successful implementation of MRI into localized prostate cancer diagnosis. PURPOSE: To examine the impact of image quality on prostate cancer detection using an in-house previously developed artificial intelligence (AI) algorithm. STUDY TYPE: Retrospective. SUBJECTS: 615 consecutive patients (median age 67 [interquartile range [IQR]: 61-71] years) with elevated serum PSA (median PSA 6.6 [IQR: 4.6-9.8] ng/mL) prior to prostate biopsy. FIELD STRENGTH/SEQUENCE: 3.0T/T2-weighted turbo-spin-echo MRI, high b-value echo-planar diffusion-weighted imaging, and gradient recalled echo dynamic contrast-enhanced. ASSESSMENTS: Scans were prospectively evaluated during clinical readout using PI-RADSv2.1 by one genitourinary radiologist with 17 years of experience. For each patient, T2-weighted images (T2WIs) were classified as high-quality or low-quality based on evaluation of both general distortions (eg, motion, distortion, noise, and aliasing) and perceptual distortions (eg, obscured delineation of prostatic capsule, prostatic zones, and excess rectal gas) by a previously developed in-house AI algorithm. Patients with PI-RADS category 1 underwent 12-core ultrasound-guided systematic biopsy while those with PI-RADS category 2-5 underwent combined systematic and targeted biopsies. Patient-level cancer detection rates (CDRs) were calculated for clinically significant prostate cancer (csPCa, International Society of Urological Pathology Grade Group ≥2) by each biopsy method and compared between high- and low-quality images in each PI-RADS category. STATISTICAL TESTS: Fisher's exact test. Bootstrap 95% confidence intervals (CI). A P value <0.05 was considered statistically significant. RESULTS: 385 (63%) T2WIs were classified as high-quality and 230 (37%) as low-quality by AI. Targeted biopsy with high-quality T2WIs resulted in significantly higher clinically significant CDR than low-quality images for PI-RADS category 4 lesions (52% [95% CI: 43-61] vs. 32% [95% CI: 22-42]). For combined biopsy, there was no significant difference in patient-level CDRs for PI-RADS 4 between high- and low-quality T2WIs (56% [95% CI: 47-64] vs. 44% [95% CI: 34-55]; P = 0.09). DATA CONCLUSION: Higher quality T2WIs were associated with better targeted biopsy clinically significant cancer detection performance for PI-RADS 4 lesions. Combined biopsy might be needed when T2WI is lower quality. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

16.
Eur J Radiol ; 168: 111095, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37717420

RESUMEN

OBJECTIVE: To evaluate a biparametric MRI (bpMRI)-based artificial intelligence (AI) model for the detection of local prostate cancer (PCa) recurrence in patients with radiotherapy history. MATERIALS AND METHODS: This study included post-radiotherapy patients undergoing multiparametric MRI and subsequent MRI/US fusion-guided and/or systematic biopsy. Histopathology results were used as ground truth. The recurrent cancer detection sensitivity of a bpMRI-based AI model, which was developed on a large dataset to primarily identify lesions in treatment-naïve patients, was compared to a prospective radiologist assessment using the Wald test. Subanalysis was conducted on patients stratified by the treatment modality (external beam radiation treatment [EBRT] and brachytherapy) and the prostate volume quartiles. RESULTS: Of the 62 patients included (median age = 70 years; median PSA = 3.51 ng/ml; median prostate volume = 27.55 ml), 56 recurrent PCa foci were identified within 46 patients. The AI model detected 40 lesions in 35 patients. The AI model performance was lower than the prospective radiology interpretation (Rad) on a patient-(AI: 76.1% vs. Rad: 91.3%, p = 0.02) and lesion-level (AI: 71.4% vs. Rad: 87.5%, p = 0.01). The mean number of false positives per patient was 0.35 (range: 0-2). The AI model performance was higher in EBRT group both on patient-level (EBRT: 81.5% [22/27] vs. brachytherapy: 68.4% [13/19]) and lesion-level (EBRT: 79.4% [27/34] vs. brachytherapy: 59.1% [13/22]). In patients with gland volumes >34 ml (n = 25), detection sensitivities were 100% (11/11) and 94.1% (16/17) on patient- and lesion-level, respectively. CONCLUSION: The reported bpMRI-based AI model detected the majority of locally recurrent prostate cancer after radiotherapy. Further testing including external validation of this model is warranted prior to clinical implementation.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata , Masculino , Humanos , Anciano , Próstata/patología , Antígeno Prostático Específico , Estudios Prospectivos , Inteligencia Artificial , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/patología , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos
17.
Prostate ; 83(16): 1519-1528, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37622756

RESUMEN

BACKGROUND: Cribriform (CBFM) pattern on prostate biopsy has been implicated as a predictor for high-risk features, potentially leading to adverse outcomes after definitive treatment. This study aims to investigate whether the CBFM pattern containing prostate cancers (PCa) were associated with false negative magnetic resonance imaging (MRI) and determine the association between MRI and histopathological disease burden. METHODS: Patients who underwent multiparametric magnetic resonance imaging (mpMRI), combined 12-core transrectal ultrasound (TRUS) guided systematic (SB) and MRI/US fusion-guided biopsy were retrospectively queried for the presence of CBFM pattern at biopsy. Biopsy cores and lesions were categorized as follows: C0 = benign, C1 = PCa with no CBFM pattern, C2 = PCa with CBFM pattern. Correlation between cancer core length (CCL) and measured MRI lesion dimension were assessed using a modified Pearson correlation test for clustered data. Differences between the biopsy core groups were assessed with the Wilcoxon-signed rank test with clustering. RESULTS: Between 2015 and 2022, a total of 131 consecutive patients with CBFM pattern on prostate biopsy and pre-biopsy mpMRI were included. Clinical feature analysis included 1572 systematic biopsy cores (1149 C0, 272 C1, 151 C2) and 736 MRI-targeted biopsy cores (253 C0, 272 C1, 211 C2). Of the 131 patients with confirmed CBFM pathology, targeted biopsy (TBx) alone identified CBFM in 76.3% (100/131) of patients and detected PCa in 97.7% (128/131) patients. SBx biopsy alone detected CBFM in 61.1% (80/131) of patients and PCa in 90.8% (119/131) patients. TBx and SBx had equivalent detection in patients with smaller prostates (p = 0.045). For both PCa lesion groups there was a positive and significant correlation between maximum MRI lesion dimension and CCL (C1 lesions: p < 0.01, C2 lesions: p < 0.001). There was a significant difference in CCL between C1 and C2 lesions for T2 scores of 3 and 5 (p ≤ 0.01, p ≤ 0.01, respectively) and PI-RADS 5 lesions (p ≤ 0.01), with C2 lesions having larger CCL, despite no significant difference in MRI lesion dimension. CONCLUSIONS: The extent of disease for CBFM-containing tumors is difficult to capture on mpMRI. When comparing MRI lesions of similar dimensions and PIRADS scores, CBFM-containing tumors appear to have larger cancer yield on biopsy. Proper staging and planning of therapeutic interventions is reliant on accurate mpMRI estimation. Special considerations should be taken for patients with CBFM pattern on prostate biopsy.


Asunto(s)
Adenocarcinoma , Neoplasias de la Próstata , Masculino , Humanos , Próstata/diagnóstico por imagen , Próstata/patología , Neoplasias de la Próstata/patología , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos , Biopsia Guiada por Imagen/métodos , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/patología
18.
AJR Am J Roentgenol ; 221(6): 773-787, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37404084

RESUMEN

BACKGROUND. Currently most clinical models for predicting biochemical recurrence (BCR) of prostate cancer (PCa) after radical prostatectomy (RP) incorporate staging information from RP specimens, creating a gap in preoperative risk assessment. OBJECTIVE. The purpose of our study was to compare the utility of presurgical staging information from MRI and postsurgical staging information from RP pathology in predicting BCR in patients with PCa. METHODS. This retrospective study included 604 patients (median age, 60 years) with PCa who underwent prostate MRI before RP from June 2007 to December 2018. A single genitourinary radiologist assessed MRI examinations for extraprostatic extension (EPE) and seminal vesicle invasion (SVI) during clinical interpretations. The utility of EPE and SVI on MRI and RP pathology for BCR prediction was assessed through Kaplan-Meier and Cox proportional hazards analyses. Established clinical BCR prediction models, including the University of California San Francisco Cancer of the Prostate Risk Assessment (UCSF-CAPRA) model and the Cancer of the Prostate Risk Assessment Postsurgical (CAPRA-S) model, were evaluated in a subset of 374 patients with available Gleason grade groups from biopsy and RP pathology; two CAPRA-MRI models (CAPRA-S model with modifications to replace RP pathologic staging features with MRI staging features) were also assessed. RESULTS. Univariable predictors of BCR included EPE on MRI (HR = 3.6), SVI on MRI (HR = 4.4), EPE on RP pathology (HR = 5.0), and SVI on RP pathology (HR = 4.6) (all p < .001). Three-year BCR-free survival (RFS) rates for patients without versus with EPE were 84% versus 59% for MRI and 89% versus 58% for RP pathology, and 3-year RFS rates for patients without versus with SVI were 82% versus 50% for MRI and 83% versus 54% for RP histology (all p < .001). For patients with T3 disease on RP pathology, 3-year RFS rates were 67% and 41% for patients without and with T3 disease on MRI. AUCs of CAPRA models, including CAPRA-MRI models, ranged from 0.743 to 0.778. AUCs were not significantly different between CAPRA-S and CAPRA-MRI models (p > .05). RFS rates were significantly different between low- and intermediate-risk groups for only CAPRA-MRI models (80% vs 51% and 74% vs 44%; both p < .001). CONCLUSION. Presurgical MRI-based staging features perform comparably to postsurgical pathologic staging features for predicting BCR. CLINICAL IMPACT. MRI staging can preoperatively identify patients at high BCR risk, helping to inform early clinical decision-making. TRIAL REGISTRATION. ClinicalTrials.gov NCT00026884 and NCT02594202.


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Persona de Mediana Edad , Próstata/patología , Vesículas Seminales/patología , Estudios Retrospectivos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía , Prostatectomía/métodos , Antígeno Prostático Específico , Imagen por Resonancia Magnética , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias
19.
Radiology ; 307(4): e221309, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37129493

RESUMEN

Background Data regarding the prospective performance of Prostate Imaging Reporting and Data System (PI-RADS) version 2.1 alone and in combination with quantitative MRI features for prostate cancer detection is limited. Purpose To assess lesion-based clinically significant prostate cancer (csPCa) rates in different PI-RADS version 2.1 categories and to identify MRI features that could improve csPCa detection. Materials and Methods This single-center prospective study included men with suspected or known prostate cancer who underwent multiparametric MRI and MRI/US-guided biopsy from April 2019 to December 2021. MRI scans were prospectively evaluated using PI-RADS version 2.1. Atypical transition zone (TZ) nodules were upgraded to category 3 if marked diffusion restriction was present. Lesions with an International Society of Urological Pathology (ISUP) grade of 2 or higher (range, 1-5) were considered csPCa. MRI features, including three-dimensional diameter, relative lesion volume (lesion volume divided by prostate volume), sphericity, and surface to volume ratio (SVR), were obtained from lesion contours delineated by the radiologist. Univariable and multivariable analyses were conducted at the lesion and participant levels to determine features associated with csPCa. Results In total, 454 men (median age, 67 years [IQR, 62-73 years]) with 838 lesions were included. The csPCa rates for lesions categorized as PI-RADS 1 (n = 3), 2 (n = 170), 3 (n = 197), 4 (n = 319), and 5 (n = 149) were 0%, 9%, 14%, 37%, and 77%, respectively. csPCa rates of PI-RADS 4 lesions were lower than PI-RADS 5 lesions (P < .001) but higher than PI-RADS 3 lesions (P < .001). Upgraded PI-RADS 3 TZ lesions were less likely to harbor csPCa compared with their nonupgraded counterparts (4% [one of 26] vs 20% [20 of 99], P = .02). Predictors of csPCa included relative lesion volume (odds ratio [OR], 1.6; P < .001), SVR (OR, 6.2; P = .02), and extraprostatic extension (EPE) scores of 2 (OR, 9.3; P < .001) and 3 (OR, 4.1; P = .02). Conclusion The rates of csPCa differed between consecutive PI-RADS categories of 3 and higher. MRI features, including lesion volume, shape, and EPE scores of 2 and 3, predicted csPCa. Upgrading of PI-RADS category 3 TZ lesions may result in unnecessary biopsies. ClinicalTrials.gov registration no. NCT03354416 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Goh in this issue.


Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Próstata , Masculino , Humanos , Anciano , Neoplasias de la Próstata/patología , Próstata/patología , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Biopsia Guiada por Imagen/métodos , Estudios Retrospectivos
20.
Eur J Radiol ; 161: 110757, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36870241

RESUMEN

Multiparametric magnetic resonance imaging (mpMRI) plays a vital role in prostate cancer diagnosis and management. With the increase in use of mpMRI, obtaining the best possible quality images has become a priority. The Prostate Imaging Reporting and Data System (PI-RADS) was introduced to standardize and optimize patient preparation, scanning techniques, and interpretation. However, the quality of the MRI sequences depends not only on the hardware/software and scanning parameters, but also on patient-related factors. Common patient-related factors include bowel peristalsis, rectal distension, and patient motion. There is currently no consensus regarding the best approaches to address these issues and improve the quality of mpMRI. New evidence has been accrued since the release of PI-RADS, and this review aims to explore the key strategies which aim to improve prostate MRI quality, such as imaging techniques, patient preparation methods, the new Prostate Imaging Quality (PI-QUAL) criteria, and artificial intelligence on prostate MRI quality.


Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Próstata , Masculino , Humanos , Próstata/diagnóstico por imagen , Próstata/patología , Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/patología , Inteligencia Artificial , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA