Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Chem Rev ; 124(2): 455-553, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38174868

RESUMEN

In the era of Internet-of-things, many things can stay connected; however, biological systems, including those necessary for human health, remain unable to stay connected to the global Internet due to the lack of soft conformal biosensors. The fundamental challenge lies in the fact that electronics and biology are distinct and incompatible, as they are based on different materials via different functioning principles. In particular, the human body is soft and curvilinear, yet electronics are typically rigid and planar. Recent advances in materials and materials design have generated tremendous opportunities to design soft wearable bioelectronics, which may bridge the gap, enabling the ultimate dream of connected healthcare for anyone, anytime, and anywhere. We begin with a review of the historical development of healthcare, indicating the significant trend of connected healthcare. This is followed by the focal point of discussion about new materials and materials design, particularly low-dimensional nanomaterials. We summarize material types and their attributes for designing soft bioelectronic sensors; we also cover their synthesis and fabrication methods, including top-down, bottom-up, and their combined approaches. Next, we discuss the wearable energy challenges and progress made to date. In addition to front-end wearable devices, we also describe back-end machine learning algorithms, artificial intelligence, telecommunication, and software. Afterward, we describe the integration of soft wearable bioelectronic systems which have been applied in various testbeds in real-world settings, including laboratories that are preclinical and clinical environments. Finally, we narrate the remaining challenges and opportunities in conjunction with our perspectives.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Humanos , Inteligencia Artificial , Técnicas Biosensibles/métodos , Electrónica , Atención a la Salud
2.
Nat Commun ; 14(1): 5173, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620355

RESUMEN

Two-dimensional (2D) ferromagnetic materials with unique magnetic properties have great potential for next-generation spintronic devices with high flexibility, easy controllability, and high heretointegrability. However, realizing magnetic switching with low power consumption at room temperature is challenging. Here, we demonstrate the room-temperature spin-orbit torque (SOT) driven magnetization switching in an all-van der Waals (vdW) heterostructure using an optimized epitaxial growth approach. The topological insulator Bi2Te3 not only raises the Curie temperature of Fe3GeTe2 (FGT) through interfacial exchange coupling but also works as a spin current source allowing the FGT to switch at a low current density of ~2.2×106 A/cm2. The SOT efficiency is ~2.69, measured at room temperature. The temperature and thickness-dependent SOT efficiency prove that the larger SOT in our system mainly originates from the nontrivial topological origin of the heterostructure. Our experiments enable an all-vdW SOT structure and provides a solid foundation for the implementation of room-temperature all-vdW spintronic devices in the future.

3.
Nat Commun ; 13(1): 7259, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36433978

RESUMEN

Time-lapse mechanical properties of stem cell derived cardiac organoids are important biological cues for understanding contraction dynamics of human heart tissues, cardiovascular functions and diseases. However, it remains difficult to directly, instantaneously and accurately characterize such mechanical properties in real-time and in situ because cardiac organoids are topologically complex, three-dimensional soft tissues suspended in biological media, which creates a mismatch in mechanics and topology with state-of-the-art force sensors that are typically rigid, planar and bulky. Here, we present a soft resistive force-sensing diaphragm based on ultrasensitive resistive nanocracked platinum film, which can be integrated into an all-soft culture well via an oxygen plasma-enabled bonding process. We show that a reliable organoid-diaphragm contact can be established by an 'Atomic Force Microscope-like' engaging process. This allows for instantaneous detection of the organoids' minute contractile forces and beating patterns during electrical stimulation, resuscitation, drug dosing, tissue culture, and disease modelling.


Asunto(s)
Diafragma , Organoides , Humanos , Corazón , Tórax , Fenómenos Mecánicos
4.
Biosens Bioelectron ; 205: 114072, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35192998

RESUMEN

Blood pressure (BP) is a cardiovascular parameter which exhibits significant variability. Whilst continuous BP monitoring would be of significant clinical utility. This is particularly challenging outside the hospital environment. New wearable cuff-based and cuffless BP monitoring technologies provide some capacity, however they have a number of limitations including bulkiness, rigidity and discomfort, poor accuracy and motion artefact. Here, we report on a lightweight, user-friendly, non-invasive wearable cardiac sensing system based on deformation-insensitive conductive gold nanowire foam (G-foam) and pressure-sensitive resistive gold nanowire electronic skin (G-skin). The G-foam could serve as a new soft dry bioelectrode for electrocardiogram (ECG) monitoring; a new soft button-based G-skin design could avoid manual holding for continuous pulse recording. They could be integrated seamlessly with everyday bandage for facile wireless recording of ECG and artery pulses under real-word dynamic environments including walking, running, deep squatting, and jogging. Further machine learning algorithm was developed for estimation of systolic and diastolic BP, showing comparable accuracy to commercial cuff-based sphygmomanometer. The measured dynamic BP changes correlated well with the volunteer's daily activities, indicating the potential applications of our soft wearable systems for real-time diagnostics of cardiovascular functions in complex dynamic real-world setting.


Asunto(s)
Técnicas Biosensibles , Nanocables , Dispositivos Electrónicos Vestibles , Determinación de la Presión Sanguínea , Oro , Humanos
5.
Adv Healthc Mater ; 10(17): e2100577, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34019737

RESUMEN

In spite of advances in electronics and internet technologies, current healthcare remains hospital-centred. Disruptive technologies are required to translate state-of-art wearable devices into next-generation patient-centered diagnosis and therapy. In this review, recent advances in the emerging field of soft wearable materials and devices are summarized. A prerequisite for such future healthcare devices is the need of novel materials to be mechanically compliant, electrically conductive, and biologically compatible. It is begun with an overview of the two viable design strategies reported in the literatures, which is followed by description of state-of-the-art wearable healthcare devices for monitoring physical, electrophysiological, chemical, and biological signals. Self-powered wearable bioenergy devices are also covered and sensing systems, as well as feedback-controlled wearable closed-loop biodiagnostic and therapy systems. Finally, it is concluded with an overall summary and future perspective.


Asunto(s)
Dispositivos Electrónicos Vestibles , Atención a la Salud , Conductividad Eléctrica , Electrónica , Fenómenos Electrofisiológicos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA