Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Biomater Adv ; 161: 213893, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38796955

RESUMEN

Angiogenesis plays a crucial role in bone regeneration. Hypoxia is a driving force of angiogenesis at the initial stage of tissue repair. The hypoxic microenvironment could activate the hypoxia-inducible factor (HIF)-1α signaling pathway in cells, thereby enhancing the proliferation, migration and pro-angiogenic functions of stem cells. However, long-term chronic hypoxia could inhibit osteogenic differentiation and even lead to apoptosis. Therefore, shutdown of the HIF-1α signaling pathway and providing oxygen at later stage probably facilitate osteogenic differentiation and bone regeneration. Herein, an oxygen tension regulating hydrogel that sequentially activate and deactivate the HIF-1α signaling pathway were prepared in this study. Its effect and mechanism on stem cell differentiation were investigated both in vitro and in vivo. We proposed a gelatin-based hydrogel capable of sequentially delivering a hypoxic inducer (copper ions) and oxygen generator (calcium peroxide). The copper ions released from the hydrogels significantly enhanced cell viability and VEGF secretion of BMSCs via upregulating HIF-1α expression and facilitating its translocation into the nucleus. Additionally, calcium peroxide promoted alkaline phosphatase activity, osteopontin secretion, and calcium deposition through the activation of ERK1/2. Both Cu2+ and calcium peroxide demonstrated osteogenic promotion individually, while their synergistic effect within the hydrogels led to a superior osteogenic effect by potentially activating the HIF-1α and ERK1/2 signaling pathways.


Asunto(s)
Regeneración Ósea , Hidrogeles , Subunidad alfa del Factor 1 Inducible por Hipoxia , Sistema de Señalización de MAP Quinasas , Células Madre Mesenquimatosas , Neovascularización Fisiológica , Osteogénesis , Oxígeno , Hidrogeles/farmacología , Hidrogeles/química , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Regeneración Ósea/efectos de los fármacos , Animales , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/fisiología , Oxígeno/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Gelatina , Supervivencia Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Peróxidos
2.
Sci Adv ; 9(31): eadh7779, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37531437

RESUMEN

Currently, the effectiveness of oncotherapy is limited by tumor heterogeneities, which presents a huge challenge for the development of nanotargeted drug delivery systems (DDSs). Therefore, it is important to resolve the spatiotemporal interactions between tumors and nanoparticles. However, targeting evaluation has been limited by particle visualization due to the gap between whole-organ scale and subcellular precision. Here, a high-precision three-dimensional (3D) visualization of tumor structure based on the micro-optical sectioning tomography (MOST) system and fluorescence MOST (fMOST) system is presented to clarify 3D spatial distribution of nanoparticles within the tumor. We demonstrate that through the MOST/fMOST system, it is possible to reveal multidimensional and cross-scale correlations between the tumor structure and nanoparticle distribution to remodel the tumor microenvironment and explore the structural parameters of vasculature. This visualization methodology provides an accurate assessment of the efficacy, distribution, and targeting efficiency of DDSs for oncotherapy compared to available approaches.


Asunto(s)
Nanopartículas , Neoplasias , Tomografía Óptica , Humanos , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Pulmón/diagnóstico por imagen , Tomografía Óptica/métodos , Microambiente Tumoral
3.
Mol Pharm ; 20(9): 4404-4429, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37552597

RESUMEN

Drug delivery systems (DDSs) play an important role in delivering active pharmaceutical ingredients (APIs) to targeted sites with a predesigned release pattern. The chemical and biological properties of APIs and excipients have been extensively studied for their contribution to DDS quality and effectiveness; however, the structural characteristics of DDSs have not been adequately explored. Structure pharmaceutics involves the study of the structure of DDSs, especially the three-dimensional (3D) structures, and its interaction with the physiological and pathological structure of organisms, possibly influencing their release kinetics and targeting abilities. A systematic overview of the structures of a variety of dosage forms, such as tablets, granules, pellets, microspheres, powders, and nanoparticles, is presented. Moreover, the influence of structures on the release and targeting capability of DDSs has also been discussed, especially the in vitro and in vivo release correlation and the structure-based organ- and tumor-targeting capabilities of particles with different structures. Additionally, an in-depth discussion is provided regarding the application of structural strategies in the DDSs design and evaluation. Furthermore, some of the most frequently used characterization techniques in structure pharmaceutics are briefly described along with their potential future applications.


Asunto(s)
Biofarmacia , Neoplasias , Humanos , Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas , Excipientes
4.
Front Immunol ; 14: 1132129, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845130

RESUMEN

Objective: Mucosal immunization was an effective defender against pathogens. Nasal vaccines could activate both systemic and mucosal immunity to trigger protective immune responses. However, due to the weak immunogenicity of nasal vaccines and the lack of appropriate antigen carriers, very few nasal vaccines have been clinically approved for human use, which was a major barrier to the development of nasal vaccines. Plant-derived adjuvants are promising candidates for vaccine delivery systems due to their relatively safe immunogenic properties. In particular, the distinctive structure of pollen was beneficial to the stability and retention of antigen in the nasal mucosa. Methods: Herein, a novel wild-type chrysanthemum sporopollenin vaccine delivery system loaded with a w/o/w emulsion containing squalane and protein antigen was fabricated. The unique internal cavities and the rigid external walls within the sporopollenin skeleton construction could preserve and stabilize the inner proteins. The external morphological characteristics were suitable for nasal mucosal administration with high adhesion and retention. Results: Secretory IgA antibodies in the nasal mucosa can be induced by the w/o/w emulsion with the chrysanthemum sporopollenin vaccine delivery system. Moreover, the nasal adjuvants produce a stronger humoral response (IgA and IgG) compared to squalene emulsion adjuvant. Mucosal adjuvant benefited primarily from prolongation of antigens in the nasal cavity, improvement of antigen penetration in the submucosa and promotion of CD8+ T cells in spleen. Disccusion: Based on effective delivering both the adjuvant and the antigen, the increase of protein antigen stability and the realization of mucosal retention, the chrysanthemum sporopollenin vaccine delivery system has the potential to be a promising adjuvant platform. This work provide a novel idea for the fabrication of protein-mucosal delivery vaccine.


Asunto(s)
Inmunidad Mucosa , Vacunas , Humanos , Emulsiones/farmacología , Mucosa Nasal , Adyuvantes Inmunológicos/farmacología , Antígenos
5.
Int J Biol Macromol ; 232: 123486, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36731693

RESUMEN

Vascularization remains a major challenge in tissue engineering. In tissue repair with the involvement of biomaterials, both the material properties and material-induced immune response can affect angiogenesis. However, there is a scarcity of research on biomaterials that modulate angiogenesis simultaneously from both perspectives. Meanwhile, the effects and mechanisms of biomaterial-induced macrophages on angiogenesis remain controversial. In this study, a cytokine-controlled release system from our previous work was employed, and the effects thereof on angiogenesis through both direct and indirect means were investigated. Alginate/chitosan multilayer films were fabricated on interleukin (IL)-4-loaded titania nanotubes to achieve a sustained release of IL-4. The released IL-4 and the multilayers synergistically promoted angiogenic behaviors of endothelial cells (ECs), while up-regulating the expression of early vascular markers. Furthermore, polarized macrophages (both M1 and M2) notably elevated the expression of late vascular markers in ECs via the high expression of pro-maturation factor angiogenin-1. After subcutaneous implantation, the IL-4-loaded implants induced increased neovascularization in a short period, with the surrounding tissue returning to normal at the later stage. Therefore, the proposed IL-4-loaded implants exhibited superior pro-angiogenic capability in vitro and in vivo through both direct stimulation of ECs and the indirect induction of a suitable immune microenvironment.


Asunto(s)
Quitosano , Interleucina-4/farmacología , Fenotipo , Células Endoteliales , Alginatos , Materiales Biocompatibles/farmacología
6.
Sci China Chem ; 66(2): 324-366, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36536633

RESUMEN

Analyzing the complex structures and functions of brain is the key issue to understanding the physiological and pathological processes. Although neuronal morphology and local distribution of neurons/blood vessels in the brain have been known, the subcellular structures of cells remain challenging, especially in the live brain. In addition, the complicated brain functions involve numerous functional molecules, but the concentrations, distributions and interactions of these molecules in the brain are still poorly understood. In this review, frontier techniques available for multiscale structure imaging from organelles to the whole brain are first overviewed, including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), serial-section electron microscopy (ssEM), light microscopy (LM) and synchrotron-based X-ray microscopy (XRM). Specially, XRM for three-dimensional (3D) imaging of large-scale brain tissue with high resolution and fast imaging speed is highlighted. Additionally, the development of elegant methods for acquisition of brain functions from electrical/chemical signals in the brain is outlined. In particular, the new electrophysiology technologies for neural recordings at the single-neuron level and in the brain are also summarized. We also focus on the construction of electrochemical probes based on dual-recognition strategy and surface/interface chemistry for determination of chemical species in the brain with high selectivity and long-term stability, as well as electrochemophysiological microarray for simultaneously recording of electrochemical and electrophysiological signals in the brain. Moreover, the recent development of brain MRI probes with high contrast-to-noise ratio (CNR) and sensitivity based on hyperpolarized techniques and multi-nuclear chemistry is introduced. Furthermore, multiple optical probes and instruments, especially the optophysiological Raman probes and fiber Raman photometry, for imaging and biosensing in live brain are emphasized. Finally, a brief perspective on existing challenges and further research development is provided.

7.
Anal Chem ; 94(38): 13136-13144, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36111576

RESUMEN

Characterizing interactions between microbial cells and their specific inhibitory drugs is essential for developing effective drugs and understanding the therapeutic mechanism. Functional metal nanoclusters can be effective inhibitory agents against microorganisms according to various characterization methods, but quantitative three-dimensional (3D) spatial structural analysis of intact cells is lacking. Herein, using coherent X-ray diffraction imaging, we performed in situ 3D visualization of unstained Staphylococcus aureus cells treated with peptide-mineralized Au-cluster probes at a resolution of ∼47 nm. Subsequent 3D mass-density mapping and quantitative structural analyses of S. aureus in different degrees of destruction showed that the bacterial cell wall was damaged and cytoplasmic constituents were released from cells, confirming the significant antibacterial effects of the Au-cluster probe. This study provides a promising nondestructive approach for quantitative imaging and paves the way for further research into microbe-inhibitor drug interactions.


Asunto(s)
Imagenología Tridimensional , Staphylococcus aureus , Antibacterianos/química , Antibacterianos/farmacología , Imagenología Tridimensional/métodos , Pruebas de Sensibilidad Microbiana , Péptidos/farmacología , Difracción de Rayos X
8.
Acta Pharm Sin B ; 12(5): 2568-2577, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35646529

RESUMEN

Defining and visualizing the three-dimensional (3D) structures of pharmaceuticals provides a new and important tool to elucidate the phenomenal behavior and underlying mechanisms of drug delivery systems. The mechanism of drug release from complex structured dosage forms, such as bilayer osmotic pump tablets, has not been investigated widely for most solid 3D structures. In this study, bilayer osmotic pump tablets undergoing dissolution, as well as after dissolution in a desiccated solid state were examined, and visualized by synchrotron radiation micro-computed tomography (SR-µCT). In situ formed 3D structures at different in vitro drug release states were characterized comprehensively. A distinct movement pattern of NaCl crystals from the push layer to the drug layer was observed, beneath the semi-permeable coating in the desiccated tablet samples. The 3D structures at different dissolution time revealed that the pushing upsurge in the bilayer osmotic pump tablet was directed via peripheral "roadways". Typically, different regions of the osmotic front, infiltration region, and dormant region were classified in the push layer during the dissolution of drug from tablet samples. According to the observed 3D microstructures, a "subterranean river model" for the drug release mechanism has been defined to explain the drug release mechanism.

9.
Front Neurosci ; 16: 870520, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35516801

RESUMEN

Simultaneously visualizing Amyloid-ß (Aß) plaque with its surrounding brain structures at the subcellular level in the intact brain is essential for understanding the complex pathology of Alzheimer's disease, but is still rarely achieved due to the technical limitations. Combining the micro-optical sectioning tomography (MOST) system, whole-brain Nissl staining, and customized image processing workflow, we generated a whole-brain panorama of Alzheimer's disease mice without specific labeling. The workflow employed the steps that include virtual channel splitting, feature enhancement, iso-surface rendering, direct volume rendering, and feature fusion to extract and reconstruct the different signals with distinct gray values and morphologies. Taking advantage of this workflow, we found that the denser-distribution areas of Aß plaques appeared with relatively more somata and smaller vessels, but show a dissimilar distributing pattern with nerve tracts. In addition, the entorhinal cortex and adjacent subiculum regions present the highest density and biggest diameter of plaques. The neuronal processes in the vicinity of these Aß plaques showed significant structural alternation such as bending or abrupt branch ending. The capillaries inside or adjacent to the plaques were observed with abundant distorted micro-vessels and abrupt ending. Depicting Aß plaques, somata, nerve processes and tracts, and blood vessels simultaneously, this panorama enables us for the first time, to analyze how the Aß plaques interact with capillaries, somata, and processes at a submicron resolution of 3D whole-brain scale, which reveals potential pathological effects of Aß plaques from a new cross-scale view. Our approach opens a door to routine systematic studies of complex interactions among brain components in mouse models of Alzheimer's disease.

10.
Acta Pharm Sin B ; 12(1): 326-338, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127389

RESUMEN

Changes in structure of oral solid dosage forms (OSDF) elementally determine the drug release and its therapeutic effects. In this research, synchrotron radiation X-ray micro-computed tomography was utilized to visualize the 3D structure of enteric coated pellets recovered from the gastrointestinal tract of rats. The structures of pellets in solid state and in vitro compendium media were measured. Pellets in vivo underwent morphological and structural changes which differed significantly from those in vitro compendium media. Thus, optimizations of the dissolution media were performed to mimic the appropriate in vivo conditions by introducing pepsin and glass microspheres in media. The sphericity, pellet volume, pore volume and porosity of the in vivo esomeprazole magnesium pellets in stomach for 2 h were recorded 0.47, 1.55 × 108 µm3, 0.44 × 108 µm3 and 27.6%, respectively. After adding pepsin and glass microspheres, the above parameters in vitro reached to 0.44, 1.64 × 108 µm3, 0.38 × 108 µm3 and 23.0%, respectively. Omeprazole magnesium pellets behaved similarly. The structural features of pellets between in vitro media and in vivo condition were bridged successfully in terms of 3D structures to ensure better design, characterization and quality control of advanced OSDF.

11.
Neurosci Bull ; 37(10): 1469-1480, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34146232

RESUMEN

Effective methods for visualizing neurovascular morphology are essential for understanding the normal spinal cord and the morphological alterations associated with diseases. However, ideal techniques for simultaneously imaging neurovascular structure in a broad region of a specimen are still lacking. In this study, we combined Golgi staining with angiography and synchrotron radiation micro-computed tomography (SRµCT) to visualize the 3D neurovascular network in the mouse spinal cord. Using our method, the 3D neurons, nerve fibers, and vasculature in a broad region could be visualized in the same image at cellular resolution without destructive sectioning. Besides, we found that the 3D morphology of neurons, nerve fiber tracts, and vasculature visualized by SRµCT were highly consistent with that visualized using the histological method. Moreover, the 3D neurovascular structure could be quantitatively evaluated by the combined methodology. The method shown here will be useful in fundamental neuroscience studies.


Asunto(s)
Imagenología Tridimensional , Sincrotrones , Animales , Ratones , Redes Neurales de la Computación , Médula Espinal/diagnóstico por imagen , Microtomografía por Rayos X
12.
Sci Rep ; 11(1): 12927, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155289

RESUMEN

Neurovascular injury is often observed in traumatic brain injury (TBI). However, the relationship between mechanical forces and vascular injury is still unclear. A key question is whether the complex anatomy of vasculature plays a role in increasing forces in cerebral vessels and producing damage. We developed a high-fidelity multiscale finite element model of the rat brain featuring a detailed definition of the angioarchitecture. Controlled cortical impacts were performed experimentally and in-silico. The model was able to predict the pattern of blood-brain barrier damage. We found strong correlation between the area of fibrinogen extravasation and the brain area where axial strain in vessels exceeds 0.14. Our results showed that adjacent vessels can sustain profoundly different axial stresses depending on their alignment with the principal direction of stress in parenchyma, with a better alignment leading to larger stresses in vessels. We also found a strong correlation between axial stress in vessels and the shearing component of the stress wave in parenchyma. Our multiscale computational approach explains the unrecognised role of the vascular anatomy and shear stresses in producing distinct distribution of large forces in vasculature. This new understanding can contribute to improving TBI diagnosis and prevention.


Asunto(s)
Lesiones Traumáticas del Encéfalo/etiología , Encéfalo/irrigación sanguínea , Encéfalo/patología , Modelos Animales de Enfermedad , Modelos Biológicos , Estrés Mecánico , Animales , Biomarcadores , Encéfalo/diagnóstico por imagen , Angiografía Cerebral , Susceptibilidad a Enfermedades , Ratas
13.
Mater Sci Eng C Mater Biol Appl ; 124: 112087, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33947577

RESUMEN

The essentiality of macrophages for biomaterial-mediated osteogenesis has been increasingly recognized. However, it is still unclear what is the specific role and molecular mechanisms of macrophages and material properties in the regulation of osteogenesis. As an interdisciplinary field exploring the cross-talk between immune and skeletal systems, osteoimmunology has shifted the perspective of bone substitute materials from immunosuppressive materials to immunomodulatory materials. To fabricate an immunomodulatory Ti implant, alginate/chitosan multilayer films were fabricated on the surface of titania nanotubes (TNTs) to control the release of an anti-inflammatory cytokine interleukin (IL)-4 according to our previous work. The osteogenic effects and regulation mechanisms of the immunomodulatory Ti implants were investigated in vitro in different BMSCs culture modes. Alginate/chitosan multilayer-coated samples (with or without IL-4 loading) showed better direct osteogenic ability than TNTs by promoting biomineralization and up-regulating osteogenic gene expression (BMP1α, ALP, OPN, OCN) of BMSCs. Notably, material-induced macrophage polarization, M1 and M2, enhanced early and mid-stage osteogenesis of BMSCs via distinct pathways: M1 activated both BMP6/SMADs and Wnt10b/ß-catenin pathways; while M2 activated TGF-ß/SMADs pathway. Material surface properties dominated in regulating late osteogenesis probably due to the surface chemical composition (alginate, chitosan and Ca2+, etc.). Due to synergistic effects of material-induced inflammatory microenvironment and material surface properties, IL-4-loaded samples exhibited superior osteogenic capability through co-activation of three signaling pathways. The in vivo studies in rat bone defect model revealed that IL-4-loaded immunomodulatory implants successfully achieved macrophage phenotypic transition from pro-inflammatory M1 to anti-inflammatory M2 and subsequently improved new bone formation.


Asunto(s)
Quitosano , Osteogénesis , Alginatos/farmacología , Animales , Diferenciación Celular , Ratones , Células RAW 264.7 , Ratas , Propiedades de Superficie , Titanio/farmacología
14.
Adv Sci (Weinh) ; 8(8): 2003941, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33898181

RESUMEN

The effective pulmonary deposition of inhaled particulate carriers loaded with drugs is a prerequisite for therapeutic effects of drug delivery via inhalation route. Revealing the sophisticated lung scaffold and intrapulmonary distribution of particles at three-dimensional (3D), in-situ, and single-particle level remains a fundamental and critical challenge for dry powder inhalation in pre-clinical research. Here, taking advantage of the micro optical sectioning tomography system, the high-precision cross-scale visualization of entire lung anatomy is obtained. Then, co-localized lung-wide datasets of both cyto-architectures and fluorescent particles are collected at full scale with the resolution down to individual particles. The precise spatial distribution pattern reveals the region-specific distribution and structure-associated deposition of the inhalable particles in lungs, which is undetected by previous methods. Overall, this research delivers comprehensive and high-resolution 3D detection of pulmonary drug delivery vectors and provides a novel strategy to evaluate materials distribution for drug delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Inhaladores de Polvo Seco/métodos , Imagenología Tridimensional/métodos , Pulmón/anatomía & histología , Microtomografía por Rayos X/métodos , Administración por Inhalación , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales
15.
Histochem Cell Biol ; 155(4): 477-489, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33398435

RESUMEN

Exploring the three-dimensional (3D) morphology of neurons is essential to understanding spinal cord function and associated diseases comprehensively. However, 3D imaging of the neuronal network in the broad region of the spinal cord at cellular resolution remains a challenge in the field of neuroscience. In this study, to obtain high-resolution 3D imaging of a detailed neuronal network in the mass of the spinal cord, the combination of synchrotron radiation micro-computed tomography (SRµCT) and the Golgi-cox staining were used. We optimized the Golgi-Cox method (GCM) and developed a modified GCM (M-GCM), which improved background staining, reduced the number of artefacts, and diminished the impact of incomplete vasculature compared to the current GCM. Moreover, we achieved high-resolution 3D imaging of the detailed neuronal network in the spinal cord through the combination of SRµCT and M-GCM. Our results showed that the M-GCM increased the contrast between the neuronal structure and its surrounding extracellular matrix. Compared to the GCM, the M-GCM also diminished the impact of the artefacts and incomplete vasculature on the 3D image. Additionally, the 3D neuronal architecture was successfully quantified using a combination of SRµCT and M-GCM. The SRµCT was shown to be a valuable non-destructive tool for 3D visualization of the neuronal network in the broad 3D region of the spinal cord. Such a combinatorial method will, therefore, transform the presentation of Golgi staining from 2 to 3D, providing significant improvements in the 3D rendering of the neuronal network.


Asunto(s)
Aparato de Golgi/química , Imagenología Tridimensional , Neuronas/citología , Médula Espinal/citología , Coloración y Etiquetado , Microtomografía por Rayos X , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Sincrotrones
16.
Mater Sci Eng C Mater Biol Appl ; 116: 111137, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32806274

RESUMEN

Hydrophilic matrix tablets are the most commonly used dosage forms to fabricate oral controlled-release systems. It is highly desirable to design delivery system with novel mechanism to achieve sustained drug release through a simplified preparation process. The chitosan-anionic polymers based matrix tablets is assumed to produce self-assembly in the gastrointestinal tract, then transferring into film-coated tablets from original matrix type. But its dynamic behavior during dissolution process and the on-going internal microstructural changes during drug release were still in the dark. In this study, by using synchrotron radiation X-ray micro-tomography (SR-µCT) with phase contrast imaging, the micro-structure characteristics of chitosan-λ-carrageenan (CS-λ-CG) matrix based tablets during the dissolution were successfully elucidated for the first time. The qualitative and quantitative analyses of intensity distribution distinguished a hydrated CS-λ-CG layer from a solid core. Visualization based on 3D models provided quantitative details on the micro-structural characteristics of hydration dynamics. After CS-λ-CG matrix tablets were immersed in simulated gastric fluid (SGF) pH 1.2 medium for 0.5-2.0 h, the hydrated layer transformed into a gel layer and a solid swollen layer. The erosion front, swelling front, and solvent penetration front were also defined from the distinguishable micro-structures. More importantly, once the matrix tablet was transferred from SGF to the simulated intestinal fluid (SIF) pH 6.8 medium, a new layer with the enhanced strength and compactness in comparison to common gels was formed on the surface of tablets. The temporal and spatial variation of 3D models further provided direct evidence for this cross-linking behavior, the new layer was composed of CS-λ-CG polyelectrolyte complexes (PEC) which subsequently dominated release mechanisms. In summary, the phase contrast SR-µCT technique was utilized to investigate the hydration dynamics of CS-λ-CG matrix tablets which was supposed to provide a novel drug release mechanism. Based on the structure feature obtained from the high contrast image, different hydration region was distinguished and the cross-linked film was identified and visualized directly for the first time.


Asunto(s)
Polielectrolitos , Sincrotrones , Microtomografía por Rayos X , Preparaciones de Acción Retardada , Solubilidad , Comprimidos
17.
Aging Dis ; 11(3): 603-617, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32489705

RESUMEN

The complex pathology of chronic thoracic spinal cord compression involves vascular and neuroarchitectural repair processes that are still largely unknown. In this study, we used synchrotron radiation microtomography (SRµCT) to quantitatively characterize the 3D temporal-spatial changes in the vascular and neuronal network after chronic thoracic spinal cord compression in order to obtain further insights into the pathogenesis of this disease and to elucidate its underlying mechanisms. Direct 3D characterization of the spinal cord microvasculature and neural microstructure of the thoracic spinal cord was successfully reconstructed. The significant reduction in vasculature and degeneration of neurons in the thoracic spinal cord visualized via SRµCT after chronic compression were consistent with the changes detected by immunofluorescence staining. The 3D morphological measurements revealed significant reductions of neurovascular parameters in the thoracic spinal cord after 1 month of compression and became even worse after 6 months without relief of compression. In addition, the distinct 3D morphological twist and the decrease in branches of the central sulcal artery after chronic compression vividly displayed that these could be the potential triggers leading to blood flow reduction and neural deficits of the thoracic spinal cord. Our findings propose a novel methodology for the 3D analysis of neurovascular repair in chronic spinal cord compression, both qualitatively and quantitatively. The results indicated that compression simultaneously caused vascular dysfunction and neuronal network impairment, which should be acknowledged as concurrent events after chronic thoracic spinal cord injury. Combining neuroprotection with vasoprotection may provide promising therapeutic targets for chronic thoracic spinal cord compression.

18.
Eur J Pharm Sci ; 149: 105324, 2020 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-32311456

RESUMEN

The multiple-unit sustained-release (MUSR) dosage forms containing numerous sustained-release subunits present a reliable choice for oral formulation of controlled release systems. As a typical MUSR, the metoprolol succinate sustained-release tablet is an advanced system with limited researches devoted to relating its structure to the drug release phase other than the preparation process and modulation to the release behaviors. This research details a three-dimension method to image the internal structure and detail drug release features of commercial metoprolol succinate sustained-release tablets and component individual single pellets. As such, a new perspective for MUSR dosage form is provided. Using high energy synchrotron radiation X-ray microcomputed tomography (SR-µCT), the in-situ structure parameters were obtained nondestructively. It was demonstrated that the average number of spherical pellets in a tablet was 853 ± 12 (n = 3). The average volume of the pellets was 0.09 ± 0.01 mm3, the diameter was 0.55 ± 0.03 mm, and the sphericity was 0.87 ± 0.06. These data reflected the numerical features of pellets in MUSR tablets, which were helpful for reverse engineering to MUSR. Based on the three dimensional model generated by image processing and analysis software, the pellet structures were divided into three layers of typical depot sustained release system: pellet core, drug-containing layer and outer film. The dynamic structural features determined refer to the changes of structures in pellets during in vitro drug release, with evidence that the coating layer on the pellets maintained a spherical morphology whilst numerous valleys appeared on the surface. The material constitution and distribution in coating layer were evaluated by synchrotron radiation-based Fourier transform infrared mapping and results indicated a composition of hydroxypropyl methylcellulose dispersed in ethyl cellulose. Knowledge of these structural characteristics confirmed that the mechanism of sustained drug release was membrane controlled and consistent with the drug release profiles. In conclusion, the structural investigation provided knowledge of the intrinsic quality of metoprolol succinate sustained-release tablets and offers guidance for reverse engineering of MUSR.

19.
Asian J Pharm Sci ; 15(1): 60-68, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32175018

RESUMEN

The shapes of particles and their distribution in tablets, controlled by pretreatment and tableting process, determine the pharmaceutical performance of excipient like lubricant. This study aims to provide deeper insights to the relationship of the morphology and spatial distribution of stearic acid (SA) with the lubrication efficiency, as well as the resulting tablet property. Unmodified SA particles as flat sheet-like particles were firstly reprocessed by emulsification in hot water to obtain the reprocessed SA particles with spherical morphology. The three-dimensional (3D) information of SA particles in tablets was detected by a quantitative and non-invasive 3D structure elucidation technique, namely, synchrotron radiation X-ray micro-computed tomography (SR-µCT). SA particles in glipizide tablets prepared by using unmodified SA (GUT), reprocessed SA (GRT), as well as reference listed drug (RLD) of glipizide tablets were analyzed by SR-µCT. The results showed that the reprocessed SA with better flowability contributed to similarity of breaking forces between that of GRT and RLD. SA particles in GRT were very similar to those in RLD with uniform morphology and particle size, while SA particles in GUT were not evenly distributed. These findings not only demonstrated the feasibility of SR-µCT as a new method in revealing the morphology and spatial distribution of excipient in drug delivery system, but also deepened insights of solid dosage form design into a new scale by powder engineering.

20.
Neurosci Bull ; 36(4): 333-345, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31823302

RESUMEN

Characterizing the three-dimensional (3D) morphological alterations of microvessels under both normal and seizure conditions is crucial for a better understanding of epilepsy. However, conventional imaging techniques cannot detect microvessels on micron/sub-micron scales without angiography. In this study, synchrotron radiation (SR)-based X-ray in-line phase-contrast imaging (ILPCI) and quantitative 3D characterization were used to acquire high-resolution, high-contrast images of rat brain tissue under both normal and seizure conditions. The number of blood microvessels was markedly increased on days 1 and 14, but decreased on day 60 after seizures. The surface area, diameter distribution, mean tortuosity, and number of bifurcations and network segments also showed similar trends. These pathological changes were confirmed by histological tests. Thus, SR-based ILPCI provides systematic and detailed views of cerebrovascular anatomy at the micron level without using contrast-enhancing agents. This holds considerable promise for better diagnosis and understanding of the pathogenesis and development of epilepsy.


Asunto(s)
Epilepsia , Hipocampo/diagnóstico por imagen , Sincrotrones , Animales , Epilepsia/diagnóstico por imagen , Hipocampo/patología , Imagenología Tridimensional , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA