Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Heliyon ; 10(15): e35571, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170375

RESUMEN

Background: The significant rebound of influenza A (H1N1) virus activity, particularly among children, with rapidly growing number of hospitalized cases is of major concern in the post-COVID-19 era. The present study was performed to establish a prediction model of severe case in pediatric patients hospitalized with H1N1 infection during the post-COVID-19 era. Methods: This is a multicenter retrospective study across nine public tertiary hospitals in Yunnan, China, recruiting pediatric H1N1 inpatients hospitalized at five of these centers between February 1 and July 1, 2023, into the development dataset. Screening of 40 variables including demographic information, clinical features, and laboratory parameters were performed utilizing Least Absolute Shrinkage and Selection Operator (LASSO) regression and logistic regression to determine independent risk factors of severe H1N1 infection, thus constructing a prediction nomogram. Receiver operating characteristic (ROC) curve, calibration curve, as well as decision curve analysis (DCA) were employed to evaluate the model's performance. Data from four independent cohorts comprised of pediatric H1N1 inpatients from another four hospitals between July 25 and October 31, 2023, were utilized to externally validate this nomogram. Results: The development dataset included 527 subjects, 122 (23.1 %) of whom developed severe H1N1 infection. The external validation dataset included 352 subjects, 72 (20.5 %) of whom were eventually confirmed as severe H1N1 infection. The LASSO regression identified 19 candidate predictors, with logistic regression further narrowing down to 11 independent risk factors, including underlying conditions, prematurity, fever duration, wheezing, poor appetite, leukocyte count, neutrophil-lymphocyte ratio (NLR), erythrocyte sedimentation rate (ESR), lactate dehydrogenase (LDH), interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α). By integrating these 11 factors, a predictive nomogram was established. In terms of prediction of severe H1N1 infection, excellent discriminative capacity, favorable accuracy, and satisfactory clinical usefulness of this model were internally and externally validated via ROC curve, calibration curve, and DCA, respectively. Conclusion: Our study successfully established and validated a novel nomogram model integrating underlying conditions, prematurity, fever duration, wheezing, poor appetite, leukocyte count, NLR, ESR, LDH, IL-10, and TNF-α. This nomogram can effectively predict the occurrence of serious case in pediatric H1N1 inpatients during the post-COVID-19 era, facilitating the early recognition and more efficient clinical management of such patients.

2.
Heliyon ; 10(11): e31742, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38845994

RESUMEN

This review aims to explore the current application of Cranial Ultrasound Screening (CUS) in the diagnosis and treatment of brain diseases in extremely preterm infants. It also discusses the potential role of emerging ultrasound-derived technologies such as Super Microvascular Structure Imaging (SMI), Shear Wave Elastography (SWE), Ultrafast Doppler Ultrasound (UfD), and 3D ventricular volume assessment and automated segmentation techniques in clinical practice. A systematic search of medical databases was conducted using the keywords "(preterm OR extremely preterm OR extremely low birth weight) AND (ultrasound OR ultrasound imaging) AND (neurodevelopment OR brain development OR brain diseases OR brain injury OR neuro*)" to identify relevant literature. The titles, abstracts, and full texts of the identified articles were carefully reviewed to determine their relevance to the research topic. CUS offers unique advantages in early screening and monitoring of brain diseases in extremely preterm infants, as it can be performed at the bedside without the need for anesthesia or special monitoring. This technique facilitates early detection and intervention of conditions such as intraventricular hemorrhage, white matter injury, hydrocephalus, and hypoxic-ischemic injury in critically ill preterm infants. Continuous refinement of the screening and follow-up processes provides reliable clinical decision-making support for healthcare professionals and parents. Emerging ultrasound technologies, such as SWE, SMI, and UfD, are being explored to provide more accurate and in-depth understanding of brain diseases in extremely preterm infants. SWE has demonstrated its effectiveness in assessing the elasticity of neonatal brain tissue, aiding in the localization and quantification of potential brain injuries. SMI can successfully identify microvascular structures in the brain, offering a new perspective on neurologic diseases. UfD provides a high-sensitivity and quantitative imaging method for the prevention and treatment of neonatal brain diseases by detecting subtle changes in red blood cell movement and accurately assessing the status and progression of brain diseases. CUS and its emerging technologies have significant applications in the diagnosis and treatment of brain diseases in extremely preterm infants. Future research aims to address current technical challenges, optimize and enhance the clinical decision-making capabilities related to brain development, and improve the prevention and treatment outcomes of brain diseases in extremely preterm infants.

3.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167259, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38796918

RESUMEN

BACKGROUND: Alcohol-associated liver disease (ALD) is a leading cause of liver disease-related deaths worldwide. Unfortunately, approved medications for the treatment of this condition are quite limited. One promising candidate is the anthocyanin, Cyanidin-3-O-glucoside (C3G), which has been reported to protect mice against hepatic lipid accumulation, as well as fibrosis in different animal models. However, the specific effects and mechanisms of C3G on ALD remain to be investigated. EXPERIMENTAL APPROACH: In this report, a Gao-binge mouse model of ALD was used to investigate the effects of C3G on ethanol-induced liver injury. The mechanisms of these C3G effects were assessed using AML12 hepatocytes. RESULTS: C3G administration ameliorated ethanol-induced liver injury by suppressing hepatic oxidative stress, as well as through reducing hepatic lipid accumulation and inflammation. Mechanistically, C3G activated the AMPK pathway and enhanced mitophagy to eliminate damaged mitochondria, thus reducing mitochondria-derived reactive oxidative species in ethanol-challenged hepatocytes. CONCLUSIONS: The results of this study indicate that mitophagy plays a potentially important role underlying the hepatoprotective action of C3G, as demonstrated in a Gao-binge mouse model of ALD. Accordingly, C3G may serve as a promising, new therapeutic drug candidate for use in ALD.


Asunto(s)
Antocianinas , Modelos Animales de Enfermedad , Etanol , Glucósidos , Hepatopatías Alcohólicas , Mitofagia , Estrés Oxidativo , Animales , Antocianinas/farmacología , Mitofagia/efectos de los fármacos , Ratones , Glucósidos/farmacología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/prevención & control , Etanol/toxicidad , Etanol/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Masculino , Ratones Endogámicos C57BL , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Especies Reactivas de Oxígeno/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos
4.
Front Pediatr ; 12: 1369431, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655275

RESUMEN

Introduction: This study aimed to investigate the correlation between Mycoplasma pneumoniae (MP)-DNA load in the bronchoalveolar lavage fluid (BALF) of children with MP pneumonia (MPP) and its subtypes, relevant laboratory data, imaging, extrapulmonary complications in infected children, and its clinical significance in evaluating the disease. Methods: Children hospitalized with MPP at Tianjin Children's Hospital between December 2017 and December 2020 were selected for the study, excluding those with mixed viral, bacterial, and fungal infections. Children were divided into low- and high-load groups according to the MP DNA load in BALF using real-time quantitative fluorescence polymerase chain reaction (PCR). After a successful MP culture, positive specimens were subjected to PCR-Restriction fragment length polymorphism and Multiple-locus variable number tandem repeat analysis typing. Basic data, clinical information, laboratory data, and radiological results were collected from all children included in the study. Results: The PI-I type dominated the different load groups. Children in the low-load group had more wheezing and shortness of breath; however, children in the high-load group had a higher length of hospitalization, maximum fever temperature, higher chills/chilliness, incidence of abdominal pain, and higher C-reactive protein (CRP), procalcitonin (PCT) and aspartate aminotransferase (AST) levels. Children in the high-load group were more likely to have imaging changes such as pleural effusion, and the incidence of respiratory infections and extrapulmonary complications was higher than that of those in the low-load group. We applied Spearman's correlation analysis to clarify the relationship between MP DNA load and the clinical severity of MPP. We found that MP DNA load was positively correlated with length of hospitalization, maximum fever temperature, CRP, PCT, Interleukin-6 (IL-6), and AST levels, and negatively correlated with fever and cough durations, white blood cell count (WBC), and proportion of monocytes (MONO). The degree of correlation was as follows: length of hospitalization > IL-6 > cough duration > AST > fever duration > PCT > WBC > proportion of MONO > maximum fever temperature > CRP levels. Conclusions: MP DNA load was not correlated with MP typing but was significantly correlated with the children's clinical phenotype. Therefore, the MP DNA load helps in the early diagnosis of infection and can better predict disease regression.

5.
Virus Res ; 344: 199366, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38548137

RESUMEN

Gamma-aminobutyric acid (GABA) signals in various non-neuronal cells including hepatocytes and some immune cells. Studies, including ours, show that type A GABA receptors (GABAARs)-mediated signaling occurs in macrophages regulating tissue-specific functions. Our recent study reveals that activation of GABAARs in liver macrophages promotes their M2-like polarization and increases HBV replication in mice. This short article briefly summarizes the GABA signaling system in macrophages and discusses potential mechanisms by which GABA signaling promotes HBV replication.


Asunto(s)
Hepatitis B , Macrófagos , Receptores de GABA-A , Transducción de Señal , Replicación Viral , Ácido gamma-Aminobutírico , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Ácido gamma-Aminobutírico/metabolismo , Hepatitis B/virología , Hepatitis B/metabolismo , Virus de la Hepatitis B/fisiología , Virus de la Hepatitis B/genética , Hígado/virología , Hígado/metabolismo , Macrófagos/virología , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética
6.
World J Pediatr ; 20(6): 556-568, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38238638

RESUMEN

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) not only significantly improves survival rates in severely ill neonates but also is associated with long-term neurodevelopmental issues. To systematically review the available literature on the neurodevelopmental outcomes of neonates and infants who have undergone ECMO treatment, with a focus on motor deficits, cognitive impairments, sensory impairments, and developmental delays. This review aims to understand the incidence, prevalence, and risk factors for these problems and to explore current nursing care and management strategies. DATA SOURCES: A comprehensive literature search was performed across PubMed, EMBASE, and Web of Science using a wide array of keywords and phrases pertaining to ECMO, neonates, infants, and various facets of neurodevelopment. The initial screening involved reviewing titles and abstracts to exclude irrelevant articles, followed by a full-text assessment of potentially relevant literature. The quality of each study was evaluated based on its research methodology and statistical analysis. Moreover, citation searches were conducted to identify potentially overlooked studies. Although the focus was primarily on neonatal ECMO, studies involving children and adults were also included due to the limited availability of neonate-specific literature. RESULTS: About 50% of neonates post-ECMO treatment exhibit varying degrees of brain injury, particularly in the frontal and temporoparietal white matter regions, often accompanied by neurological complications. Seizures occur in 18%-23% of neonates within the first 24 hours, and bleeding events occur in 27%-60% of ECMO procedures, with up to 33% potentially experiencing ischemic strokes. Although some studies suggest that ECMO may negatively impact hearing and visual development, other studies have found no significant differences; hence, the influence of ECMO remains unclear. In terms of cognitive, language, and intellectual development, ECMO treatment may be associated with potential developmental delays, including lower composite scores in cognitive and motor functions, as well as potential language and learning difficulties. These studies emphasize the importance of early detection and intervention of potential developmental issues in ECMO survivors, possibly necessitating the implementation of a multidisciplinary follow-up plan that includes regular neuromotor and psychological evaluations. Overall, further multicenter, large-sample, long-term follow-up studies are needed to determine the impact of ECMO on these developmental aspects. CONCLUSIONS: The impact of ECMO on an infant's nervous system still requires further investigation with larger sample sizes for validation. Fine-tuned management, comprehensive nursing care, appropriate patient selection, proactive monitoring, nutritional support, and early rehabilitation may potentially contribute to improving the long-term outcomes for these infants.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Humanos , Oxigenación por Membrana Extracorpórea/efectos adversos , Recién Nacido , Lactante , Discapacidades del Desarrollo/etiología , Discapacidades del Desarrollo/epidemiología , Femenino , Masculino , Encéfalo/crecimiento & desarrollo , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA