Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Chemosphere ; 335: 139081, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37263505

RESUMEN

Utilizing degradable mulching film effectively decreases the accumulation of plastic residuals in agriculture fields and their impacts on plant growth. However, the chemical risks to plants raised by leached substances from different microplastics are still unknown. This work determined the characteristics of macro- and microplastic leachates from different degradation (PE, PO, and Bio) and size (1 × 1 cm, 450-600 µm and <355 µm), as well as their impact on the germination of two varieties of cotton seeds. Our study revealed that degradable characteristics of macro-plastic significantly affect its leachates. Leachates of Bio gained higher dissolved organic carbon (DOC) concentration, aromatic, and values of slope ratios (SR) compared with PO and PE. The particle size of Bio macro- and microplastics also influences indicators such as SR, E250/E365, E253/E203, and Fmax value; however, fluctuations of those indicators were significantly lower than that induced by different degradable traits. Leachates of PE, PO, and Bio seem to have little impact on the germination of two varieties of cotton seeds, only mean germination time (MGT) and shoot height were slightly different among each treatment. A slight fluctuation of enzyme activities also indicates that plastic leachate did not generate excessive oxidative stress in cotton during germination. Leachates of macro- and microplastic under the tested concentration exhibited a slight toxic impact on cotton, which has high-stress tolerance. Thus, further studies should concentrate on the effects of plastic leachate on sensitive plants.


Asunto(s)
Microplásticos , Plásticos , Plásticos/metabolismo , Microplásticos/metabolismo , Germinación , Semillas , Plantas , Gossypium
2.
J Hazard Mater ; 453: 131391, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37043864

RESUMEN

Microplastics (MPs) contamination in soils seriously threatens agroecosystems globally. However, very few studies have been done on the effects of MPs on the soil nitrogen cycle and related functional microorganisms. To assess MP's impact on the soil nitrogen cycle and related functional bacteria, we carried out a one-month soil incubation experiment using typical acidic soil. The soil was amended with alfalfa meal and was spiked with 1% and 5% (mass percentage) of low-density polyethylene (LDPE) and polyvinyl chloride (PVC) MPs. Our results showed that both LDPE and PVC addition significantly increased soil nitrification rate and nitrate reductase activity, which could further promote soil denitrification. The relative abundance of diazotrophs, ammonium oxidizing, and denitrifying bacterial groups were significantly altered with MPs addition. Moreover, the MPs treatments greatly enhanced denitrifying bacteria richness. Redundancy analysis showed that nitrate reductase activity was the most significant factor affecting the soil functional bacterial community. Correlation analysis shows that Nitrosospira genus might be for the improvement of soil nitrification rate. Our results implied that MPs exposure could significantly affect the soil nitrogen cycling in farmland ecosystems by influencing essential nitrogen functional microorganisms and related enzymatic activities.


Asunto(s)
Nitrificación , Polietileno , Polietileno/farmacología , Microplásticos/farmacología , Plásticos , Cloruro de Polivinilo , Ecosistema , Suelo , Nitrógeno/farmacología , Bacterias , Nitrato Reductasas/farmacología , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA