Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Mol Cell Biochem ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276171

RESUMEN

The increased global prevalence of metabolic dysfunction-associated steatohepatitis (MASLD) has been closely associated with chronic disorders of the circadian clock. Herein, we investigate the role of Clock, a core circadian gene, in the pathogenesis of MASLD. Wild-type (WT) and liver-specific Clock knockdown (Clock-KD) mice were fed a Western diet for 20 weeks to induce MASLD. A cellular MASLD model was established by treating AML12 cells with free fatty acids and the effects of Clock knockdown were examined following transfection with Clock siRNA. Increased lipid deposition and more severe steatohepatitis and fibrosis were observed in the livers of Western diet-fed but not normal chow diet-fed Clock-KD mice after 20 weeks compared to WT mice. Moreover, the Clock gene was found to be significantly downregulated in WT MASLD mice. The Clock gene was shown to regulate the expression of lipophagy-related proteins (LC3B, P62, RAB7, and PLIN2) in vivo and in vitro. Knockdown of Clock was found to inhibit lipophagy resulting in increased accumulation of lipid droplets in the mouse liver and AML12 cells. Interestingly, the CLOCK protein was shown to interact with P62. However, knockdown of the Clock gene did not promote transcription of the P62 gene but suppressed degradation of the P62 protein during lipophagy in AML12 cells. The hepatic Clock gene regulates lipophagy and affects lipid droplet deposition in liver cells, and thus plays a critical role in the development of MASLD induced by a Western diet.

2.
Front Immunol ; 15: 1432018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346902

RESUMEN

Extracorporeal membrane oxygenation (ECMO), as an extracorporeal life support technique, can save the lives of reversible critically ill patients when conventional treatments fail. However, ECMO-related acute organ injury is a common complication that increases the risk of death in critically ill patients, including acute kidney injury, acute brain injury, acute lung injury, and so on. In ECMO supported patients, an increasing number of studies have shown that activation of the inflammatory response plays an important role in the development of acute organ injury. Cross-cascade activation of the complement system, the contact system, and the coagulation system, as well as the mechanical forces of the circuitry are very important pathophysiological mechanisms, likely leading to neutrophil activation and the production of neutrophil extracellular traps (NETs). NETs may have the potential to cause organ damage, generating interest in their study as potential therapeutic targets for ECMO-related acute organ injury. Therefore, this article comprehensively summarized the mechanism of neutrophils activation and NETs formation following ECMO treatment and their actions on acute organ injury.


Asunto(s)
Trampas Extracelulares , Oxigenación por Membrana Extracorpórea , Activación Neutrófila , Neutrófilos , Humanos , Oxigenación por Membrana Extracorpórea/efectos adversos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Animales , Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/inmunología , Insuficiencia Multiorgánica/terapia , Enfermedad Crítica
3.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(8): 795-802, 2024 Aug 15.
Artículo en Chino | MEDLINE | ID: mdl-39148382

RESUMEN

The "Guidelines for parenteral nutrition in preterm infants: the American Society for parenteral and enteral nutrition" were developed by the American Society for Parenteral and Enteral Nutrition and published in the Journal of Parenteral and Enteral Nutrition in September 2023. The guidelines provide recommendations on 12 key clinical questions regarding parenteral nutrition (PN) for preterm infants. In comparison to similar guidelines, this set offers more detailed perspectives on PN for preterm infants. It presents evidence-based recommendations for the commencement time, nutrient dosage, and composition of PN, considering primary outcomes such as growth and development, as well as secondary outcomes like sepsis, retinopathy of prematurity, parenteral nutrition-related liver disease, and jaundice. This article aims to interpret the guidelines to provide a reference for colleagues in the field.


Asunto(s)
Nutrición Enteral , Recien Nacido Prematuro , Nutrición Parenteral , Guías de Práctica Clínica como Asunto , Humanos , Nutrición Parenteral/normas , Nutrición Parenteral/métodos , Recién Nacido , Nutrición Enteral/normas , Nutrición Enteral/métodos , Sociedades Médicas
4.
Structure ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39173620

RESUMEN

With advanced computational methods, it is now feasible to modify or design proteins for specific functions, a process with significant implications for disease treatment and other medical applications. Protein structures and functions are intrinsically linked to their backbones, making the design of these backbones a pivotal aspect of protein engineering. In this study, we focus on the task of unconditionally generating protein backbones. By means of codebook quantization and compression dictionaries, we convert protein backbone structures into a distinctive coded language and propose a GPT-based protein backbone generation model, PB-GPT. To validate the generalization performance of the model, we trained and evaluated the model on both public datasets and small protein datasets. The results demonstrate that our model has the capability to unconditionally generate elaborate, highly realistic protein backbones with structural patterns resembling those of natural proteins, thus showcasing the significant potential of large language models in protein structure design.

5.
Perfusion ; : 2676591241237133, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175255

RESUMEN

Background: Extracorporeal life support echniques as an Adjunct to Advanced Cardiac Life Support is usually suitable for complex heart surgery such as cardiopulmonary bypass (CPB). Cerebral perfusion is a clinically feasible neuroprotective strategy; however, the lack of a reliable small animal model.Methods: Based on the rat model of ECLS we evaluate the effects of ECLS-CP using HE staining, Nissl staining, TUNEL staining and ELISA.Result: We found that ECLS combined with the cerebral perfusion model did not cause brain injury and immune inflammation. There was no difference between the two by a left carotid artery or right carotid artery CP.Conclusion: These experimental results can provide the experimental basis for selecting blood vessels for ECLS patients and clinical CP to offers a trustworthy animal model for future exploration of applying brain perfusion strategies during ECLS-CP.

7.
J Cell Mol Med ; 28(13): e18505, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39001579

RESUMEN

Hypoxia-ischaemia (HI) can induce the death of cerebrovascular constituent cells through oxidative stress. Hydrogen is a powerful antioxidant which can activate the antioxidant system. A hypoxia-ischaemia brain damage (HIBD) model was established in 7-day-old SD rats. Rats were treated with different doses of hydrogen-rich water (HRW), and brain pericyte oxidative stress damage, cerebrovascular function and brain tissue damage were assessed. Meanwhile, in vitro-cultured pericytes were subjected to oxygen-glucose deprivation and treated with different concentrations of HRW. Oxidative injury was measured and the molecular mechanism of how HRW alleviated oxidative injury of pericytes was also examined. The results showed that HRW significantly attenuated HI-induced oxidative stress in the brain pericytes of neonatal rats, partly through the Nrf2-HO-1 pathway, further improving cerebrovascular function and reducing brain injury and dysfunction. Furthermore, HRW is superior to a single-cell death inhibitor for apoptosis, ferroptosis, parthanatos, necroptosis and autophagy and can better inhibit HI-induced pericyte death. The liver and kidney functions of rats were not affected by present used HRW dose. This study elucidates the role and mechanism of hydrogen in treating HIBD from the perspective of pericytes, providing new theoretical evidence and mechanistic references for the clinical application of hydrogen in neonatal HIE.


Asunto(s)
Animales Recién Nacidos , Encéfalo , Hidrógeno , Hipoxia-Isquemia Encefálica , Estrés Oxidativo , Pericitos , Ratas Sprague-Dawley , Animales , Pericitos/efectos de los fármacos , Pericitos/metabolismo , Hidrógeno/farmacología , Hipoxia-Isquemia Encefálica/patología , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Ratas , Estrés Oxidativo/efectos de los fármacos , Encéfalo/patología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Antioxidantes/farmacología
8.
Early Hum Dev ; 195: 106083, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39059341

RESUMEN

PURPOSE: Recently, near-infrared spectroscopy (NIRS) has been proposed for diagnosing patients with neonatal necrotizing enterocolitis (NEC). However, a consensus on the credibility of NIRS in evaluating NEC risk has not been reached. This meta-analysis aimed to evaluate the relationship between NEC and splanchnic regional tissue oxygen saturation (SrSO2) and cerebral regional tissue oxygen saturation (CrSO2) detected by NIRS to clarify the clinical value of NIRS in evaluating the risk of NEC. METHODS: Studies using NIRS to monitor regional tissue oxygen saturation (rSO2) in neonates with NEC published in PubMed, Web of Science, Embase, and the Cochrane Library were searched from their inception to 30 July 2023. Mean difference (MD), pooled sensitivity, and pooled specificity, along with their 95 % confidence intervals (CI), were calculated, and the random-effects model was used for analysis. This study was registered with PROSPERO (no. CRD42022326783). RESULTS: Fourteen studies including 938 neonates (172 NEC, 766 controls) were identified. SrSO2 was significantly decreased in patients with NEC (MD: -12.52, 95 % CI: -15.95, -9.08; P < 0.00001), and this decrease was observed even before the diagnosis of NEC (MD: -13.79, 95 % CI: -17.97, -9.62; P < 0.00001). The pooled sensitivity and specificity of SrSO2 were 0.80 (95 % CI: 0.69, 0.88) and 0.90 (95 % CI: 0.61, 0.98), respectively. However, no significant difference in CrSO2 was found (MD: -4.37, 95 % CI: -10.62, 1.88; P = 0.17). CONCLUSIONS: SrSO2, detected by NIRS, could be a valuable non-invasive method for differentiating NEC from non-NEC neonates. It could differentiate prior to NEC diagnosis.


Asunto(s)
Enterocolitis Necrotizante , Espectroscopía Infrarroja Corta , Enterocolitis Necrotizante/diagnóstico , Humanos , Espectroscopía Infrarroja Corta/métodos , Recién Nacido , Saturación de Oxígeno
9.
Front Physiol ; 15: 1368892, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887319

RESUMEN

Introduction: Endothelial dysfunction indicates blood vessel injury and is a risk factor for cardiovascular diseases. Blueberry has been approved for its benefits on human health, especially on cardiovascular function. However, its effect on endothelial function remains unclear. We conducted a systematic review and meta-analysis to explore the impact of blueberries on endothelial function in adults. Methods: We searched PubMed, Web of Science, Embase, and the Cochrane Library, 16 studies were included in the systematic review, and 11 were used for the meta-analysis. Data associated with endothelial function were extracted and pooled as mean differences (MD) with 95% confidence intervals (CI). Results: Blueberry consumption significantly improved flow-mediated dilation (FMD) by 1.50% (95% CI: 0.81, 2.20; I2 = 87%) and reactive hyperemia index (RHI) by 0.26 (95% CI: 0.09, 0.42; I2 = 72%). A significant decrease in diastolic blood pressure (DBP) was also observed (MD: -2.20 mm Hg; 95% CI: -4.13, -0.27; I2 = 11%). Subgroup analysis indicated a significant decrease in blood pressure (Systolic blood pressure [SBP]: -3.92 mmHg; 95% CI: -6.88, -0.97; I2 = 20% and DBP: -2.20 mmHg; 95% CI: -4.13, -0.27; I2 = 11%) in the smoking population. However, SBP levels (MD: -1.43 mm Hg; 95% CI: -3.11, 0.26; I2 = 20%) and lipid status (high-density lipoprotein cholesterol [HDL-C]: 0.06; 95% CI: -0.04, 0.16; I2 = 77%; low-density lipoprotein cholesterol [LDL-C]: 0.05; 95% CI: -0.14, 0.24; I2 = 0%) did not significantly improve. Conclusion: Blueberry intervention improved endothelial function and DBP. Subgroup analysis revealed a notable improvement in blood pressure among the smoking population. However, no significant effects were observed on SBP, HDL-C, and LDL-C levels. Future research should delve into the mechanisms of endothelial improvement and verify blood pressure reduction in specific subpopulations through large-scale trials. Clinical Trial Registration: https://www.crd.york.ac.uk/PROSPERO/, Identifier CRD42023491277.

10.
FASEB J ; 38(13): e23744, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885031

RESUMEN

The hypothalamic-pituitary-gonadal axis (HPG) is the key neuroendocrine axis involved in reproductive regulation. Brain and muscle ARNT-like protein 1 (Bmal1) participates in regulating the metabolism of various endocrine hormones. However, the regulation of Bmal1 on HPG and female fertility is unclear. This study aims to explore the regulation of female reproduction by Bmal1 via the HPG axis in mice. Bmal1-knockout (Ko) mice were generated using the CRISPR/Cas9 technology. The structure, function, and estrous cycle of ovarian in Bmal1 Ko female mice were measured. The key genes and proteins of the HPG axis involved in regulating female reproduction were examined through transcriptome analysis and then verified by RT-PCR, immunohistochemistry, and western blot. Furthermore, the fertility of female mice was detected after intervening prolactin (PRL) and progesterone (Pg) in Bmal1 ko mice. The number of offspring and ovarian weight were significantly lower in Bmal1-Ko mice than in wild-type (Wt) mice. In Bmal1-Ko mice, ovarian cells were arranged loosely and irregularly, and the total number of follicles was significantly reduced. No corpus luteum was found in the ovaries. Vaginal smears revealed that Bmal1-Ko mice had an irregular estrus cycle. In Bmal1-Ko mice, Star expression was decreased, PRL and luteinizing hormone (LH) levels were increased, and dopamine (DA) and Pg levels were decreased. Inhibition of PRL partially recovered the estrous cycle, corpus luteum formation, and Star expression in the ovaries. Pg supplementation promoted embryo implantation in Bmal1-Ko female mice. Bmal1 Ko increases serum PRL levels in female mice likely by reducing DA levels, thus affecting luteal formation, resulting in decreased Star expression and Pg production, hindering female reproduction. Inhibition of PRL or restoration of Pg can partially restore reproductive capacity in female Bmal1-Ko mice. Thus, Bmal1 may regulate female reproduction via the HPG axis in mice, suggesting that Bmal1 is a potential target to treat female infertility.


Asunto(s)
Factores de Transcripción ARNTL , Sistema Hipotálamo-Hipofisario , Ovario , Reproducción , Animales , Femenino , Ratones , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Ciclo Estral , Fertilidad , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Ovario/metabolismo , Progesterona/metabolismo , Prolactina/metabolismo
11.
J Glob Antimicrob Resist ; 38: 271-274, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38789084

RESUMEN

OBJECTIVES: The emergence of carbapenem-resistant Klebsiella pneumoniae presents significant health challenges. Here, we present the structural genome sequence of an NDM-5-producing K. pneumoniae (HZKP2) in China. METHODS: Antimicrobial susceptibility tests were conducted via broth microdilution. Whole-genome sequencing was performed for genomic analysis. Wzi and capsular polysaccharide (KL) were analysed using Kaptive. Resistance genes, virulence factors, and comparative genomics analyses were also conducted. Multilocus sequence typing (MLST), replicons type, and core genome MLST analysis were further conducted using BacWGSTdb server. RESULTS: HZKP2 was resistant to cefepime, ceftazidime, ciprofloxacin, ciprofloxacin, meropenem, and ertapenem. It harboured fosA, blaSHV-187, oqxA, oqxB, sul1, dfrA1, tet(A), floR, aph(6)-Id, aph(3'')-Ib, sul2, blaCTX-M-55, and blaNDM-5. Based on the RAST results, 5563 genes that belonged to 398 subsystems were annotated. The complete genome sequence of HZKP2 was characterized as ST1, wzi 19, and KL19, 5 five contigs totalling 5 654 446 bp, including one chromosome and four plasmids. Further analysis found that blaNDM-5 was located in a 46 161 bp IncX3 plasmid (pHZKP2-3). The genetic structure of blaNDM-5 gene was ISKox3-IS26-bleMBL-blaNDM-5-IS5-ISAb125-IS3000. Further analysis revealed that insertion sequences mediated the dissemination of blaNDM-5 from other species of Enterobacterales. Phylogenetic analysis showed that the closest relative was from a human stool specimen in China, which differed by 53 core genome MLST alleles. CONCLUSIONS: Our study provides the first structural perspective of the ST1 K. pneumoniae isolate producing NDM-5 in China. These results could provide valuable insights into the genetic characteristics, antimicrobial resistance mechanisms, and transmission dynamics of carbapenem-resistant K. pneumoniae in clinical settings.


Asunto(s)
Antibacterianos , Enterobacteriaceae Resistentes a los Carbapenémicos , Carbapenémicos , Genoma Bacteriano , Infecciones por Klebsiella , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Secuenciación Completa del Genoma , beta-Lactamasas , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología , China , beta-Lactamasas/genética , Humanos , Infecciones por Klebsiella/microbiología , Antibacterianos/farmacología , Carbapenémicos/farmacología , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Enterobacteriaceae Resistentes a los Carbapenémicos/aislamiento & purificación , Farmacorresistencia Bacteriana Múltiple/genética , Plásmidos/genética , Factores de Virulencia/genética
12.
Endocrine ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740695

RESUMEN

PURPOSE: This study aimed to investigate the effects of randomized, placebo-controlled trials involving the GLP-1 and glucagon receptor dual agonists, mazdutide, and cotadutide, on glycaemic control and body weight changes in individuals with type 2 diabetes mellitus (T2DM), obesity, or both. METHODS: We conducted searches in Medline, PubMed, Scopus, the Cochrane database, and Web of Science up to March 5, 2024. The primary outcomes assessed were changes in HbA1c level and percentage changes in body weight from baseline (CFB). RESULTS: Eleven studies and four unpublished trials were included. The pooled meta-analysis revealed a significant reduction in HbA1c (MD = -0.63%; 95% CI = [-0.82, -0.44]; P < 0.00001), fasting plasma glucose (MD = -1.71 mmol/L; 95% CI = [-2.31, -1.10]; P < 0.00001), and percentage change in body weight (MD = -4.16%; 95% CI = [-5.41, -2.92]; P < 0.00001). Safety analysis revealed no significant change in serious adverse events (OR = 1.03; 95% CI = [0.61, 1.75]; P = 0.91), but there were significantly higher odds of treatment-emergent adverse events (OR = 2.52; 95% CI = [1.92, 3.30]; P < 0.00001) and vomiting (OR = 6.05; 95% CI = [3.52, 10.40]; P < 0.00001). CONCLUSION: These results suggest that mazdutide and cotadutide are effective for glycaemic control and weight reduction in individuals with T2DM, obesity, or both.

13.
Comput Biol Chem ; 110: 108067, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714420

RESUMEN

Protein-protein interactions (PPI) play a crucial role in numerous key biological processes, and the structure of protein complexes provides valuable clues for in-depth exploration of molecular-level biological processes. Protein-protein docking technology is widely used to simulate the spatial structure of proteins. However, there are still challenges in selecting candidate decoys that closely resemble the native structure from protein-protein docking simulations. In this study, we introduce a docking evaluation method based on three-dimensional point cloud neural networks named SurfPro-NN, which represents protein structures as point clouds and learns interaction information from protein interfaces by applying a point cloud neural network. With the continuous advancement of deep learning in the field of biology, a series of knowledge-rich pre-trained models have emerged. We incorporate protein surface representation models and language models into our approach, greatly enhancing feature representation capabilities and achieving superior performance in protein docking model scoring tasks. Through comprehensive testing on public datasets, we find that our method outperforms state-of-the-art deep learning approaches in protein-protein docking model scoring. Not only does it significantly improve performance, but it also greatly accelerates training speed. This study demonstrates the potential of our approach in addressing protein interaction assessment problems, providing strong support for future research and applications in the field of biology.


Asunto(s)
Simulación del Acoplamiento Molecular , Redes Neurales de la Computación , Proteínas , Proteínas/química , Proteínas/metabolismo , Propiedades de Superficie
14.
Curr Microbiol ; 81(6): 138, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609554

RESUMEN

A Gram-stain-negative bacterium with a rod-to-ovoid shape, named strain M216T, was isolated from sand sediment from the coastal intertidal zone of Huludao, Liaoning Province, China. Growth was observed at 8-40 °C (optimal, 30 °C), pH 5.5-9.5 (optimal, pH 6.5) and 0.5-14.0% (w/v) NaCl (optimal, 6%). Strain M216T possessed ubiquinone-9 as its sole respiratory quinone and phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, one unidentified aminophosphoglycolipid, one unidentified aminophospholipid, two unidentified phosphoglycolipids, three unidentified phospholipids and three unidentified glycolipids as the main polar lipids. C12:0, C16:0, C12:0 3-OH, C16:1 ω9c, C18:1 ω9c and summed features 3 (C16:1 ω7c and/or C16:1 ω6c) were the major fatty acids (> 5%). The 16S rRNA gene sequence of strain M216T exhibited high similarity to those of 'Marinobacter arenosus' CAU 1620T and Marinobacter adhaerens HP15T (99.3% and 98.5%, respectively) and less than 98.5% similarity to those of the other type strains. The ANI and dDDH values between the strain M216T and 'Marinobacter arenosus' CAU 1620T were 87.4% and 33.3%, respectively; these values were the highest among the other type strains but lower than the species threshold. The G+C content of strain M216T was 58.3%. Genomic analysis revealed that strain M216T harbors the major CAZymes of GH13, GH23, GH73, and PL5, which are responsible for polysaccharide degradation and the potential ability to reduce nitrate to ammonia. Through phenotypic, genotypic, and chemotaxonomic analyses, we proposed the name Marinobacter albus sp. nov., a novel species in the genus Marinobacter, with its type strain M216T (= MCCC 1K08600T = KCTC 82894T).


Asunto(s)
Marinobacter , Marinobacter/genética , ARN Ribosómico 16S/genética , Arena , Amoníaco , China
15.
J Trace Elem Med Biol ; 83: 127420, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432121

RESUMEN

BACKGROUND: Lead (Pb) poisoning posing a crucial health risk, especially among children, causing devastating damage not only to brain development, but also to kidney function. Thus, an urgent need persists to identify highly effective, safe, and low-toxicity drugs for the treatment of Pb poisoning. The present study focused on exploring the protective effects of Se on Pb-induced nephrotoxicity in weaning rats and human renal tubular epithelial cells, and investigated the possible mechanisms. METHODS: Forty weaning rats were randomly divided into four groups in vivo: control, Pb-exposed, Pb+Se and Se. Serum creatinine (Cr), urea nitrogen (BUN) and hematoxylin and eosin (H&E) staining were performed to evaluate renal function. The activities of antioxidant enzymes in the kidney tissue were determined. In vitro experiments were performed using human renal tubular epithelial cells (HK-2 cells). The cytotoxicity of Pb and Se was detected by 3-(4,5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Inverted fluorescence microscope was used to investigate cell morphological changes and the fluorescence intensity of reactive oxygen species (ROS). The oxidative stress parameters were measured by a multi-detection reader. Nuclear factor-erythroid-2-related factor (NRF2) signaling pathways were measured by Western blot and reverse transcription polymerase chain reaction (RT-PCR) in HK-2 cells. RESULTS: We found that Se alleviated Pb-induced kidney injury by relieving oxidative stress and reducing the inflammatory index. Se significantly increased the activity of the antioxidant enzymes glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT), whereas it decreased the excessive release of malondialdehyde (MDA) in the kidneys of weaning rats and HK-2 cells. Additionally, Se enhanced the antioxidant defense systems via activating the NRF2 transcription factor, thereby promoting the to downstream expression of heme oxygenase 1. Furthermore, genes encoding glutamate-cysteine ligase synthetase catalytic (GCLC), glutamate-cysteine ligase synthetase modifier (GCLM) and NADPH quinone oxidoreductase 1 (NQO1), downstream targets of NRF2, formed a positive feedback loop with NRF2 during oxidative stress responses. The MTT assay results revealed a significant decrease in cell viability with Se treatment, and the cytoprotective role of Se was blocked upon knockdown of NRF2 by small interfering RNA (siRNA). MDA activity results also showed that NRF2 knockdown inhibited the NRF2-dependent transcriptional activity of Se. CONCLUSIONS: Our findings demonstrate that Se ameliorated Pb-induced nephrotoxicity by reducing oxidative stress both in vivo and in vitro. The molecular mechanism underlying Se's action in Pb-induced kidney injury is related to the activation of the NRF2 transcription factor and the activity of antioxidant enzymes, ultimately suppressing ROS accumulation.


Asunto(s)
Antioxidantes , Selenio , Niño , Humanos , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Selenio/farmacología , Selenio/metabolismo , Plomo/metabolismo , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Glutamato-Cisteína Ligasa/farmacología , Destete , Estrés Oxidativo , Glutatión/metabolismo , Células Epiteliales , Riñón/metabolismo , ARN Interferente Pequeño/metabolismo
16.
Chin Med J (Engl) ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38404117

RESUMEN

BACKGROUND: Very low birth weight (VLBW) infants are the key populations in neonatology, wherein morbidity and mortality remain major challenges. METHODS: A retrospective cohort study conducted aiming to analyze the clinical characteristics of VLBW in our hospital between January 2016 and December 2021. Neonates with a birth weight of <1500 g were included. Mortality, care practices, and major morbidities were analyzed, and compared with that of previous 7 years (2009-2015). RESULTS: Of the total 1750 VLBW, 1386 infants born with birth weight between 1000-1499 g and 364 were below 1000 g, 42.9% (751/1750) required delivery room resuscitation, 53.9% (943/1750) received non-invasive ventilation only, 38.2% (669/1750) received invasive ventilation; 1517 VLBW infants received complete treatment. Among them, 60.1% (912/1517) of neonates had neonatal respiratory distress syndrome (NRDS), 28.7% (436/1517) had bronchopulmonary dysplasia (BPD), 22.0% (334/1517) had apnea, 11.1% (169/1517) had culture-confirmed sepsis, 8.4% (128/1517) had pulmonary hemorrhage, 7.6% (116/1517) had severe intraventricular hemorrhage (IVH)/periventricular leukomalacia (PVL), 5.7% (87/1517) had necrotizing enterocolitis (NEC), 2.0% (31/1517) had severe retinopathy of prematurity. The total and in-hospital mortality rates were 9.7% (169/1750) and 3.0% (45/1517), respectively. The top three diagnoses of death among those who had received complete treatment were sepsis, NRDS, and NEC. In 2009-2015, 1146 VLBW were enrolled and 895 infants received complete treatment. The incidences of apnea, IVH, and IVH stage ≥3/PVL, were higher in 2009-2015 compared with those in 2016-2021, while the incidences of NRDS and BPD were characterized by significant increases in 2016-2021. The total and in-hospital mortality rates were 16.7% (191/1146) and 5.6% (50/895) respectively in 2009-2015. CONCLUSION: Among VLBW infants born in 2016-2021, the total and in-hospital mortality rates were lower than those of neonates born in 2009-2015. Incidences of NRDS and BPD increased in 2016-2021, which affected the survival rates and long-term prognosis of VLBW.

17.
Nat Commun ; 15(1): 1864, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424077

RESUMEN

Early-life human gut microbiome is a pivotal driver of gut homeostasis and infant health. However, the viral component (known as "virome") remains mostly unexplored. Here, we establish the Early-Life Gut Virome (ELGV), a catalog of 160,478 non-redundant DNA and RNA viral sequences from 8130 gut virus-like particles (VLPs) enriched or bulk metagenomes in the first three years of life. By clustering, 82,141 viral species are identified, 68.3% of which are absent in existing databases built mainly from adults, and 64 and 8 viral species based on VLPs-enriched and bulk metagenomes, respectively, exhibit potentials as biomarkers to distinguish infants from adults. With the largest longitudinal population of infants profiled by either VLPs-enriched or bulk metagenomic sequencing, we track the inherent instability and temporal development of the early-life human gut virome, and identify differential viruses associated with multiple clinical factors. The mother-infant shared virome and interactions between gut virome and bacteriome early in life are further expanded. Together, the ELGV catalog provides the most comprehensive and complete metagenomic blueprint of the early-life human gut virome, facilitating the discovery of pediatric disease-virome associations in future.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Virus , Adulto , Lactante , Niño , Humanos , Metagenoma/genética , Viroma/genética , Virus/genética , Microbioma Gastrointestinal/genética
18.
Phytomedicine ; 123: 155209, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984123

RESUMEN

BACKGROUND: Soothing the liver and regulating qi is one of the core ideas of traditional Chinese medicine (TCM) in the treatment of fatty liver. Si-Ni-San (SNS) is a well-known herbal formula in TCM for liver soothing and qi regulation in fatty liver treatment. However, its efficacy lacks modern scientific evidence. PURPOSE: This study was aimed to investigate the impact of SNS on metabolic associated fatty liver disease (MAFLD) in mice and explore the underlying molecular mechanisms, particularly its effects on lipid metabolism in hepatocytes. METHODS: The therapeutic effect of SNS was evaluated using in vivo and in vitro models of high-fat/high-cholesterol (HFHC) diet-induced mice and palmitic acid (PA)-induced hepatocytes, respectively. Molecular biological techniques such as RNA-sequencing (RNA-seq), co-immunoprecipitation (co-IP), and western blotting were employed to elucidate the molecular mechanism of SNS in regulating lipid metabolism in hepatocytes. RESULTS: Our findings revealed that SNS effectively reduced lipid accumulation in the livers of HFHC diet-induced mice and PA-induced hepatocytes. RNA-seq analysis demonstrated that SNS significantly down-regulated the expression of fatty acid synthase (Fasn) in the livers of HFHC-fed mice. Mechanistically, SNS inhibited Fasn expression and lipid accumulation by activating adenosine monophosphate (AMP)-activated protein kinase (AMPK). Activation of AMPK suppressed the activity of the transcriptional coactivator p300 and modulated the protein stability of sterol regulatory element-binding protein-1c (SREBP-1c). Importantly, p300 was required for the inhibition of Fasn expression and lipid accumulation by SNS. Furthermore, SNS activated AMPK by decreasing adenosine triphosphate (ATP) production in hepatocytes. CONCLUSION: This study provided novel evidence on the regulatory mechanisms underlying the effects of SNS on Fasn expression. Our findings demonstrate, for the first time, that SNS exerts suppressive effects on Fasn expression through modulation of the AMPK/p300/SREBP-1c axis. Consequently, this regulatory pathway mitigates excessive lipid accumulation and ameliorates MAFLD in mice.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Medicamentos Herbarios Chinos , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Hígado , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Metabolismo de los Lípidos , Ácido Graso Sintasas/metabolismo , Colesterol/metabolismo , Estabilidad Proteica
19.
Neuroscience ; 536: 36-46, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-37967738

RESUMEN

Neonatal hypoxic-ischemic encephalopathy (HIE) is an abnormal neurological condition caused by hypoxic-ischemic damage during the perinatal period. Human placenta derived mesenchymal stem cells (hPMSCs) have been shown to have protective and reparative effects in various neurological diseases; however, the research on HIE is insufficient. This study aimed to establish a rat model of HIE and transplant hPMSCs through the lateral ventricle after hypoxic-ishcemic (HI) brain damage to observe its protective effects and mechanisms, with a focus on brain apoptosis compared among groups. Differentially expressed apoptosis-related proteins were screened using a rat cytokine array and subsequent verification. Neuropilin-1 (NRP-1) and Semaphorin 3A (Sema 3A) were selected for further investigation. Western blotting was used to quantify the expression of Sema 3A and the proteins related to PI3K/Akt/mTOR signaling pathway. Exogenous Sema 3A was added to evaluate the effects of Sema 3A/NRP-1 on hPMSCs following HI injury. hPMSCs transplantation ameliorated HI-induced pathological changes, reduced apoptosis, and improved long-term neurological prognosis. Furthermore, Sema 3A/NRP-1 was a key regulator in reducing HI-induced apoptosis after hPMSCs transplantation. hPMSCs inhibited the expression of Sema 3A/NRP-1 and activated the PI3K/Akt/mTOR signaling pathway. Additionally, exogenous Sema 3A abolished the protective effects of hPMSCs against HI. In conclusion, hPMSCs transplantation reduced apoptosis and improved long-term neurological prognosis after HI by downregulating Sema 3A/NRP-1 expression and activating the PI3K/Akt/mTOR signaling pathway.


Asunto(s)
Células Madre Mesenquimatosas , Semaforina-3A , Femenino , Embarazo , Ratas , Humanos , Animales , Animales Recién Nacidos , Neuropilina-1 , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasas , Serina-Treonina Quinasas TOR , Apoptosis , Células Madre Mesenquimatosas/metabolismo
20.
IET Syst Biol ; 17(6): 366-377, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37935646

RESUMEN

Hepatocellular carcinoma (HCC) is a fatal disease with poor clinical outcomes. T cells play a vital role in the crosstalk between the tumour microenvironment and HCC. Single-cell RNA sequencing data were downloaded from the GSE149614 dataset. The T-cell-related prognostic signature (TRPS) was developed with the integrative procedure including 10 machine learning algorithms. The TRPS was established using 7 T-cell-related markers in the Cancer Genome Atlas cohort with 1-, 2- and 3-year area under curve values of 0.820, 0.725 and 0.678, respectively. TRPS acted as an independent risk factor for HCC patients. HCC patients with a high TRPS-based risk score had a higher Tumour Immune Dysfunction and Exclusion score, lower PD1 and CTLA4 immunophenoscore and lower level of immunoactivated cells, including CD8+ T cells and NK cells. The response rate was significantly higher in patients with low-risk scores in immunotherapy cohorts, including IMigor210 and GSE91061. The TRPS-based nomogram had a relatively good predictive value in evaluating the mortality risk at 1, 3 and 5 years in HCC. Overall, this study develops a TRPS by integrated bioinformatics analysis. This TRPS acted as an independent risk factor for the OS rate of HCC patients. It can screen for HCC patients who might benefit from immunotherapy, chemotherapy and targeted therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Linfocitos T CD8-positivos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Algoritmos , Biología Computacional , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA