Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Sensors (Basel) ; 24(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38733043

RESUMEN

In this paper, a novel aptamer-modified nitrogen-doped graphene microelectrode (Apt-Au-N-RGOF) was fabricated and used to specifically identify and detect dopamine (DA). During the synthetic process, gold nanoparticles were loaded onto the active sites of nitrogen-doped graphene fibers. Then, aptamers were modified on the microelectrode depending on Au-S bonds to prepare Apt-Au-N-RGOF. The prepared microelectrode can specifically identify DA, avoiding interference with other molecules and improving its selectivity. Compared with the N-RGOF microelectrode, the Apt-Au-N-RGOF microelectrode exhibited higher sensitivity, a lower detection limit (0.5 µM), and a wider linear range (1~100 µM) and could be applied in electrochemical analysis fields.


Asunto(s)
Aptámeros de Nucleótidos , Dopamina , Técnicas Electroquímicas , Oro , Grafito , Nanopartículas del Metal , Microelectrodos , Grafito/química , Dopamina/análisis , Dopamina/química , Aptámeros de Nucleótidos/química , Oro/química , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , Técnicas Biosensibles/métodos , Límite de Detección , Nitrógeno/química
2.
Angew Chem Int Ed Engl ; : e202405756, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721710

RESUMEN

Although oxygen vacancies (Ovs) have been intensively studied in single semiconductor photocatalysts, exploration of intrinsic mechanisms and in-depth understanding of Ovs in S-scheme heterojunction photocatalysts are still limited. Herein, a novel S-scheme photocatalyst made from WO3-Ov/In2S3 with Ovs at the heterointerface is rationally designed. The microscopic environment and local electronic structure of the S-scheme heterointerface are well optimized by Ovs. Femtosecond transient absorption spectroscopy (fs-TAS) reveals that Ovs trigger additional charge movement routes and therefore increase charge separation efficiency. In addition, Ovs have a synergistic effect on the thermodynamic and kinetic parameters of S-scheme photocatalysts. As a result, the optimal photocatalytic performance is significantly improved, surpassing that of single component WO3-Ov and In2S3 (by 35.5 and 3.9 times, respectively), as well as WO3/In2S3 heterojunction. This work provides new insight into regulating the photogenerated carrier dynamics at the heterointerface and also helps design highly efficient S-scheme photocatalysts.

3.
Angew Chem Int Ed Engl ; 63(11): e202319125, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38252071

RESUMEN

Organic additives with high-reduction potentials are generally applied in aqueous electrolytes to stabilize the Zn anode, while compromise safety and environmental compatibility. Highly concentrated water-in-salt electrolytes have been proposed to realize the high reversibility of Zn plating/stripping; however, their high cost and viscosity hinder their practical applications. Therefore, exploring low-concentration Zn salts, that can be used directly to stabilize Zn anodes, is of primary importance. Herein, we developed an asymmetric anion group, bi(difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide (DFTFSI- )-based novel zinc salt, Zn(DFTFSI)2 , to obtain a high ionic conductivity and a highly stable dendrite-free Zn anode. Experimental tests and theoretical calculations verified that DFTFSI- in the Zn2+ solvation sheath and inner Helmholtz plane would be preferentially reduced to construct layer-structured SEI films, inhibiting hydrogen evolution and side reactions. Consequently, the Zn | | ${||}$ Zn symmetric cell with 1M Zn(DFTFSI)2 aqueous electrolyte delivers an ultralong cycle life for >2500 h outperforming many other conventional Zn salt electrolytes. The Zn | | ${||}$ Br2 battery also exhibits a long lifespan over 1200 cycles at ~99.8 % Coulombic efficiency with a high capacity retention of 92.5 %. Furthermore, this outstanding performance translates well to a high-areal-capacity Zn | | ${||}$ Br2 battery (~5.6 mAh ⋅ cm-2 ), cycling over 320 cycles with 95.3 % initial capacity retained.

4.
Angew Chem Int Ed Engl ; 63(8): e202316841, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38091256

RESUMEN

Although rechargeable aqueous zinc batteries are cost effectiveness, intrinsicly safe, and high activity, they are also known for bringing rampant hydrogen evolution reaction and corrosion. While eutectic electrolytes can effectively eliminate these issues, its high viscosity severely reduces the mobility of Zn2+ ions and exhibits poor temperature adaptability. Here, we infuse acetamide molecules with Lewis base and hydrogen bond donors into a solvated shell of Zn[(H2 O)6 ]2+ to create Zn(H2 O)3 (ace)(BF4 )2 . The viscosity of 1ace-1H2 O is 0.032 Pa s, significantly lower than that of 1ace-0H2 O (995.6 Pa s), which improves ionic conductivity (9.56 mS cm-1 ) and shows lower freezing point of -45 °C, as opposed to 1ace-0H2 O of 4.04 mS cm-1 and 12 °C, respectively. The acidity of 1ace-1H2 O is ≈2.8, higher than 0ace-1H2 O at ≈0.76, making side reactions less likely. Furthermore, benefiting from the ZnCO3 /ZnF2 -rich organic/inorganic solid electrolyte interface, the Zn || Zn cells cycle more than 1300 hours at 1 mA cm-2 , and the Zn || Cu operated over 1800 cycles with an average Coulomb efficiency of ≈99.8 %. The Zn || PANI cell cycled over 8500 cycles, with a specific capacity of 99.8 mAh g-1 at 5 A g-1 at room temperature, and operated at -40 °C with a capacity of 66.8 mAh g-1 .

5.
Nat Commun ; 14(1): 2925, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217467

RESUMEN

One of the major obstacles hindering the application of zinc metal batteries is the contradictory demands from the Zn metal anode and cathodes. At the anode side, water induces serious corrosion and dendrite growth, remarkably suppressing the reversibility of Zn plating/stripping. At the cathode side, water is essential because many cathode materials require both H+ and Zn2+ insertion/extraction to achieve a high capacity and long lifespan. Herein, an asymmetric design of inorganic solid-state electrolyte combined with hydrogel electrolyte is presented to simultaneously meet the as-mentioned contrary requirements. The inorganic solid-state electrolyte is toward the Zn anode to realize a dendrite-free and corrosion-free highly reversible Zn plating/stripping, and the hydrogel electrolyte enables consequent H+ and Zn2+ insertion/extraction at the cathode side for high performance. Therefore, there is no hydrogen and dendrite growth detected in cells with a super high-areal-capacity up to 10 mAh·cm-2 (Zn//Zn), ~5.5 mAh·cm-2 (Zn//MnO2) and ~7.2 mAh·cm-2 (Zn//V2O5). These Zn//MnO2 and Zn//V2O5 batteries show remarkable cycling stability over 1000 cycles with 92.4% and over 400 cycles with 90.5% initial capacity retained, respectively.

6.
Angew Chem Int Ed Engl ; 62(26): e202301631, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37017994

RESUMEN

High energy density and intrinsic safety are the central pursuits in developing rechargeable Zinc-ion batteries (ZIBs). The capacity and stability of nickel cobalt oxide (NCO) cathode are unsatisfactory because of its semiconductor character. Herein, we propose a built-in electric field (BEF) approach by synergizing cationic vacancies and ferroelectric spontaneous polarization on cathode side to facilitate electron adsorption and suppress zinc dendrite growth on the anode side. Concretely, NCO with cationic vacancies was constructed to expand lattice spacing for enhanced zinc-ion storage. Heterojunction with BEF leads to the Heterojunction//Zn cell exhibiting a capacity of 170.3 mAh g-1 at 400 mA g-1 and delivering a competitive capacity retention of 83.3 % over 3000 cycles at 2 A g-1 . We conclude the role of spontaneous polarization in suppressing zinc dendrite growth dynamics, which is conducive to developing high-capacity and high-safety batteries via tailoring defective materials with ferroelectric polarization on the cathode.


Asunto(s)
Dendritas , Zinc , Cationes , Electrodos
7.
Angew Chem Int Ed Engl ; 62(19): e202301467, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36882370

RESUMEN

Though massive efforts have been devoted to exploring Br-based batteries, the highly soluble Br2 /Br3 - species causing rigorous "shuttle effect", leads to severe self-discharge and low Coulombic efficiency. Conventionally, quaternary ammonium salts such as methyl ethyl morpholinium bromide (MEMBr) and tetrapropylammonium bromide (TPABr) are used to fix Br2 and Br3 - , but they occupy the mass and volume of battery without capacity contribution. Here, we report an all-active solid interhalogen compound, IBr, as a cathode to address the above challenges, in which the oxidized Br0 is fixed by iodine (I), thoroughly eliminating cross-diffusing Br2 /Br3 - species during the whole charging and discharging process. The Zn||IBr battery delivers remarkably high energy density of 385.8 Wh kg-1 , which is higher than those of I2 , MEMBr3 , and TPABr3 cathodes. Our work provides new approaches to achieve active solid interhalogen chemistry for high-energy electrochemical energy storage devices.

8.
Chem Commun (Camb) ; 58(70): 9746-9749, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35858288

RESUMEN

The systematic in situ transmission electron microscopy (TEM) analysis suggests three stepwise formation stages during the growth of MoxW1-xS2 hexagonal flakes, which are the initial assembly of precursors into vertical structures, subsequent transition into horizontal structures, and final surface relaxing and faceting into hexagonal flakes.

9.
Mater Horiz ; 9(6): 1670-1678, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35470363

RESUMEN

Mechanisms of nucleation have been debated for more than a century, despite successes of classical nucleation theory. The nucleation process has been recently argued as involving a nonclassical mechanism (the "two-step" mechanism) in which an intermediate step occurs before the formation of a nascent ordered phase. However, a thorough understanding of this mechanism, in terms of both microscopic kinetics and thermodynamics, remains experimentally challenging. Here, in situ observations using transmission electron microscopy on a solid-state nucleation case indicate that early-stage crystallization can follow the non-classical pathway, yet proceed via a more complex manner in which multiple metastable states precede the emergence of a stable nucleus. The intermediate steps were sequentially isolated as spinodal decomposition of amorphous precursor, mass transport and structural oscillations between crystalline and amorphous states. Our experimental and theoretical analyses support the idea that the energetic favorability is the driving force for the observed sequence of events. Due to the broad applicability of solid-state crystallization, the findings of this study offer new insights into modern nucleation theory and a potential avenue for materials design.

11.
Nanoscale ; 14(5): 2065-2073, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35080227

RESUMEN

Exploring high-activity electrocatalysts for an oxygen reduction reaction (ORR) is of great significance for a variety of renewable energy conversion and storage technologies. Here, ultrafine Mo2C nanoparticles assembled in N and P-co-doped carbon (Mo2C@NPC) was developed from ZIF-8 encapsulated molybdenum-based polyoxometalates (PMo12) as a highly efficient ORR electrocatalyst and shows excellent performance for zinc-air batteries. The well distribution of the PMo12 in ZIF-8 results in the formation of ultrafine Mo2C nanocrystallites encapsulated in a porous carbon matrix after pyrolysis. Significantly, from experimental and theoretical investigations, the highly porous structure, highly dispersed ultrafine Mo2C and the N and P co-doping in the Mo2C@NPC lead to the remarkable ORR activity with an onset potential of ∼1.01 V, a half-wave potential of ∼0.90 V and a Tafel slope of 51.7 mV dec-1 at 1600 rpm in 0.1 M KOH. In addition, the Mo2C@NPC as an ORR catalyst in zinc-air batteries achieved a high power density of 266 mW cm-2 and a high specific capacity of 780.9 mA h g-1, exceeding that driven by commercial Pt/C. Our results revealed that the porous architecture and ultrafine Mo2C nanocrystallites of the electrocatalysts could facilitate mass transport and increase the accessibility of active sites, thus optimizing their performances in an ORR. The present study provides some guidelines for the design and synthesis of efficient nanostructured electrocatalysts.

12.
Light Sci Appl ; 10(1): 219, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34711799

RESUMEN

The deep-level traps induced by charged defects at the grain boundaries (GBs) of polycrystalline organic-inorganic halide perovskite (OIHP) films serve as major recombination centres, which limit the device performance. Herein, we incorporate specially designed poly(3-aminothiophenol)-coated gold (Au@PAT) nanoparticles into the perovskite absorber, in order to examine the influence of plasmonic resonance on carrier dynamics in perovskite solar cells. Local changes in the photophysical properties of the OIHP films reveal that plasmon excitation could fill trap sites at the GB region through photo-brightening, whereas transient absorption spectroscopy and density functional theory calculations correlate this photo-brightening of trap states with plasmon-induced interfacial processes. As a result, the device achieved the best efficiency of 22.0% with robust operational stability. Our work provides unambiguous evidence for plasmon-induced trap occupation in OIHP and reveals that plasmonic nanostructures may be one type of efficient additives to overcome the recombination losses in perovskite solar cells and thin-film solar cells in general.

13.
Adv Mater ; 33(12): e2007406, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33604973

RESUMEN

The hydrogen evolution in Zn metal battery is accurately quantified by in situ battery-gas chromatography-mass analysis. The hydrogen fluxes reach 3.76 mmol h-1 cm-2 in a Zn//Zn symmetric cell in each segment, and 7.70 mmol h-1 cm-2 in a Zn//MnO2 full cell. Then, a highly electronically insulating (0.11 mS cm-1 ) but highly Zn2+ ion conductive (80.2 mS cm-1 ) ZnF2 solid ion conductor with high Zn2+ transfer number (0.65) is constructed to isolate Zn metal from liquid electrolyte, which not only prohibits over 99.2% parasitic hydrogen evolution but also guides uniform Zn electrodeposition. Precisely quantitated, the Zn@ZnF2 //Zn@ZnF2 cell only produces 0.02 mmol h-1 cm-2 of hydrogen (0.53% of the Zn//Zn cell). Encouragingly, a high-areal-capacity Zn@ZnF2 //MnO2 (≈3.2 mAh cm-2 ) full cell only produces maximum hydrogen flux of 0.06 mmol h-1 cm-2 (0.78% of the Zn//Zn cell) at the fully charging state. Meanwhile, Zn@ZnF2 //Zn@ZnF2 symmetric cell exhibits excellent stability under ultrahigh current density and areal capacity (10 mA cm-2 , 10 mAh cm-2 ) over 590 h (285 cycles), which far outperforms all reported Zn metal anodes in aqueous systems. In light of the superior Zn@ZnF2 anode, the high-areal-capacity aqueous Zn@ZnF2 //MnO2 batteries (≈3.2 mAh cm-2 ) shows remarkable cycling stability over 1000 cycles with 93.63% capacity retained at ≈100% Coulombic efficiency.

14.
Angew Chem Int Ed Engl ; 60(7): 3791-3798, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33314550

RESUMEN

Proposed are Prussian blue analogue hosts with ordered and continuous channels, and electrocatalytic functionality with open Co and Fe species, which facilitate maximum I2 utilization efficiency and direct I2 to I- conversion kinetics of the I2 reduction reaction, and free up 1/3 I- from I3 - . Co[Co1/4 Fe3/4 (CN)6 ] exhibits a low energy barrier (0.47 kJ mol-1 ) and low Tafel slope (76.74 mV dec-1 ). Accordingly, the Co[Co1/4 Fe3/4 (CN)6 ]/I2 //Zn battery delivers a capacity of 236.8 mAh g-1 at 0.1 A g-1 and a rate performance with 151.4 mAh g-1 achieved even at 20 A g-1 . The battery delivers both high energy density and high-power density of 305.5 Wh kg-1 and 109.1 kW kg-1 , higher than I2 //Zn batteries reported to date. Furthermore, solid-state flexible batteries were constructed. A 100 mAh high capacity solid-state I2 //Zn battery is demonstrated with excellent cycling performance of 81.2 % capacity retained after 400 cycles.

15.
Nano Lett ; 20(11): 8112-8119, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33044079

RESUMEN

Heterogeneous ice nucleation on atmospheric aerosols strongly affects the earth's climate, and at the microscopic level, surface-irregularity-induced ice crystallization behaviors are common but crucial. Because of the lack of visual evidence and effective experimental methods, the mechanism of atomic-structure-dependent ice formation on aerosol surfaces is poorly understood. Here we chose highly oriented pyrolytic graphite (HOPG) to represent soot (a primary aerosol), and environmental scanning electron microscopy (ESEM) was performed for in situ observations of ice formation. We found that hexagonal ice crystals show an aligned growth pattern via a two-stage pathway with one a axis coinciding with the direction of atomic step edges on the HOPG surface. Additionally, the ice crystals grow at a noticeably higher speed along this direction. This study reveals the role of atomic surface defects in heterogeneous ice nucleation and may pave the way to control icing-related processes in practical applications.

16.
Phys Chem Chem Phys ; 22(29): 16665-16671, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32658220

RESUMEN

Employing two-dimensional (2D) materials as anodes for lithium-ion batteries (LIBs) is believed to be an effective approach to meet the growing demands of high-capacity next-generation LIBs. In this work, the first-principles density functional theory (DFT) calculations are employed to evaluate the potential application of two-dimensional phosphorus carbide (2D PCx, x = 2, 5, and 6) monolayers as anode materials for lithium-ion batteries. The 2D PCx systems are predicted to show outstanding structural stability and electronic properties. From the nudged elastic band calculations, the single Li atom shows extreme high diffusivities on the PCx monolayer with low energy barriers of 0.18 eV for PC2, 0.47 eV for PC5, and 0.44 eV for PC6. We further demonstrate that the theoretical specific capacity of monolayer PC5 and PC6 can reach up to 1251.7 and 1235.9 mA h g-1, respectively, several times that of a graphite anode used in commercial LIBs. These results suggest that both PC5 and PC6 monolayers are promising anode materials for LIBs. Our work opens a new avenue to explore novel 2D materials in energy applications, where phosphorus carbides could be used as high-performance anode in LIBs.

17.
Angew Chem Int Ed Engl ; 59(8): 3244-3251, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-31814233

RESUMEN

We report a straightforward strategy to design efficient N doped porous carbon (NPC) electrocatalyst that has a high concentration of easily accessible active sites for the CO2 reduction reaction (CO2 RR). The NPC with large amounts of active N (pyridinic and graphitic N) and highly porous structure is prepared by using an oxygen-rich metal-organic framework (Zn-MOF-74) precursor. The amount of active N species can be tuned by optimizing the calcination temperature and time. Owing to the large pore sizes, the active sites are well exposed to electrolyte for CO2 RR. The NPC exhibits superior CO2 RR activity with a small onset potential of -0.35 V and a high faradaic efficiency (FE) of 98.4 % towards CO at -0.55 V vs. RHE, one of the highest values among NPC-based CO2 RR electrocatalysts. This work advances an effective and facile way towards highly active and cost-effective alternatives to noble-metal CO2 RR electrocatalysts for practical applications.

18.
Angew Chem Int Ed Engl ; 58(34): 11779-11784, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31225687

RESUMEN

In this study, mechanical vibration is used for hydrogen generation and decomposition of dye molecules, with the help of BiFeO3 (BFO) square nanosheets. A high hydrogen production rate of ≈124.1 µmol g-1 is achieved under mechanical vibration (100 W) for 1 h at the resonant frequency of the BFO nanosheets. The decomposition ratio of Rhodamine B dye reaches up to ≈94.1 % after mechanical vibration of the BFO catalyst for 50 min. The vibration-induced catalysis of the BFO square nanosheets may be attributed to the piezocatalytic properties of BFO and the high specific surface area of the nanosheets. The uncompensated piezoelectric charges on the surfaces of BFO nanosheets induced by mechanical vibration result in a built-in electric field across the nanosheets. Unlike a photocatalyst for water splitting, which requires a proper band edge position for hydrogen evolution, such a requirement is not needed in piezocatalytic water splitting, where the band tilting under the induced piezoelectric field will make the conduction band of BFO more negative than the H2 /H2 O redox potential (0 V) for hydrogen generation.

19.
J Am Chem Soc ; 141(20): 8136-8145, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31017412

RESUMEN

A major challenge that prohibits the practical application of single/double-transition metal (3d-M) oxides as oxygen evolution reaction (OER) catalysts is the high overpotentials during the electrochemical process. Herein, our theoretical calculation shows that Fe will be more energetically favorable in the tetrahedral site than Ni and Co, which can further regulate their electronic structure of binary NiCo spinel oxides for optimal adsorption energies of OER intermediates and improved electronic conductivity and hence boost their OER performance. X-ray absorption spectroscopy study on the as-synthesized NiCoFe oxide catalysts indicates that Fe preferentially dopes into tetrahedral sites of the lattice, which induces high proportions of Ni3+ and Co2+ on the octahedral sites (the active sites in OER). Consequently, this material exhibits a significantly enhanced OER performance with an ultralow overpotential of 201 mV cm-2 at 10 mA cm-2 and a small Tafel slope of 39 mV dec-1, which are much superior to state-of-the-art Ni-Co based catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA