Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Blood Adv ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110987

RESUMEN

While the 2022 European LeukemiaNet (ELN) acute myeloid leukemia (AML) risk classification reliably predicts outcomes in younger patients treated with intensive chemotherapy, it is unclear whether it applies to adults ≥ 60 years treated with lower-intensity treatment (LIT). We aimed to test the prognostic impact of ELN risk in patients with newly diagnosed (ND) AML ≥ 60 years given LIT and to further refine risk stratification for these patients. A total of 595 patients were included: 11% had favorable-risk, 11% had intermediate-risk, and 78% had adverse-risk AML as defined by ELN. ELN risk was prognostic for overall survival (OS) (P<0.001) but did not stratify favorable-risk from intermediate-risk (P=0.71). Within adverse-risk AML, the impact of additional molecular abnormalities was further evaluated. Multivariable analysis was performed on a training set (N=316) and identified IDH2 mutation as an independent favorable prognostic factor, and KRAS, MLL2, and TP53 mutations as unfavorable (P<0.05). A "mutation-score" was calculated for each combination of these mutations, assigning adverse-risk patients into two risk groups: -1 to 0 points ("Beat-AML-intermediate") vs 1+ points ("Beat-AML-adverse"). In the final refined risk classification, the ELN favorable- and intermediate-risk groups were combined into a newly defined "Beat-AML-favorable-risk", in addition to mutation scoring within the ELN adverse-risk. This approach redefines risk for older ND AML and proposes refined Beat-AML-favorable- (22%), Beat-AML-intermediate- (41%), and Beat-AML-adverse-risk (37%) groups with improved discrimination for OS (2-year OS: 48% vs 33% vs 11%, respectively, P<0.001; C-index: 0.60 vs 0.55 for ELN), providing patients and providers additional information for treatment decision-making.

2.
Blood Adv ; 8(2): 429-440, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-37871309

RESUMEN

ABSTRACT: Enasidenib (ENA) is an inhibitor of isocitrate dehydrogenase 2 (IDH2) approved for the treatment of patients with IDH2-mutant relapsed/refractory acute myeloid leukemia (AML). In this phase 2/1b Beat AML substudy, we applied a risk-adapted approach to assess the efficacy of ENA monotherapy for patients aged ≥60 years with newly diagnosed IDH2-mutant AML in whom genomic profiling demonstrated that mutant IDH2 was in the dominant leukemic clone. Patients for whom ENA monotherapy did not induce a complete remission (CR) or CR with incomplete blood count recovery (CRi) enrolled in a phase 1b cohort with the addition of azacitidine. The phase 2 portion assessing the overall response to ENA alone demonstrated efficacy, with a composite complete response (cCR) rate (CR/CRi) of 46% in 60 evaluable patients. Seventeen patients subsequently transitioned to phase 1b combination therapy, with a cCR rate of 41% and 1 dose-limiting toxicity. Correlative studies highlight mechanisms of clonal elimination with differentiation therapy as well as therapeutic resistance. This study demonstrates both efficacy of ENA monotherapy in the upfront setting and feasibility and applicability of a risk-adapted approach to the upfront treatment of IDH2-mutant AML. This trial is registered at www.clinicaltrials.gov as #NCT03013998.


Asunto(s)
Aminopiridinas , Azacitidina , Leucemia Mieloide Aguda , Triazinas , Humanos , Azacitidina/efectos adversos , Isocitrato Deshidrogenasa/genética , Mutación , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Respuesta Patológica Completa
3.
Cancer Med ; 12(17): 18368-18380, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37635639

RESUMEN

BACKGROUND: We evaluated the frequency of genomic testing and treatment patterns by age category in patients with newly diagnosed (ND) acute myeloid leukemia (AML) treated in both academic- and community-based health systems within a single Midwestern State. METHODS: Retrospective analysis of data from the Indiana University Health System Enterprise Data Warehouse and two local cancer registries, of 629 patients aged ≥18 years with ND AML during 2011-2018. Primary outcome variables were, proportion of patients with genomic analysis and frequency of mutations. Chemotherapy was categorized as "standard induction" or "other chemotherapy"/targeted therapy, and hypomethylating agents. RESULTS: Overall, 13% of ND AML patients between 2011 and 2018 had evidence of a genomic sequencing report with a demonstrated increase to 37% since 2016. Genomic testing was more likely performed in patients: aged ≤60 years than >60 years (45% vs. 30%; p = 0.03), treated in academic versus community hospitals (44% vs. 26%; p = 0.01), and in chemotherapy recipients than non-therapy recipients (46% vs. 19%; p < 0.001). Most common mutations were ASXL1, NPM1, and FLT3. Patients ≥75 years had highest proportion (46%) of multiple (≥3) mutations. Overall, 31.2% of patients with AML did not receive any therapy for their disease. This subgroup was older than chemotherapy recipients (mean age: 71.4 vs. 55.7 years, p < 0.001), and was highest (66.2%) in patients ≥75 years. CONCLUSIONS: Our results highlight the unmet medical need to increase access to genomic testing to afford treatment options, particularly to older AML patients in the real-world setting, in this new era of targeted therapies.


Asunto(s)
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Adulto , Adolescente , Anciano , Estudios Retrospectivos , Pronóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Mutación , Pruebas Genéticas
4.
Blood Adv ; 7(20): 6048-6054, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37459200

RESUMEN

Next-generation sequencing (NGS) to identify pathogenic mutations is an integral part of acute myeloid leukemia (AML) therapeutic decision-making. The concordance in identifying pathogenic mutations among different NGS platforms at different diagnostic laboratories has been studied in solid tumors but not in myeloid malignancies to date. To determine this interlaboratory concordance, we collected a total of 194 AML bone marrow or peripheral blood samples from newly diagnosed patients with AML enrolled in the Beat AML Master Trial (BAMT) at 2 academic institutions. We analyzed the diagnostic samples from patients with AML for the detection of pathogenic myeloid mutations in 8 genes (DNMT3A, FLT3, IDH1, IDH2, NPM1, TET2, TP53, and WT1) locally using the Hematologic Neoplasm Mutation Panel (50-gene myeloid indication filter) (site 1) or the GeneTrails Comprehensive Heme Panel (site 2) at the 2 institutions and compared them with the central results from the diagnostic laboratory for the BAMT, Foundation Medicine, Inc. The overall percent agreement was over 95% each in all 8 genes, with almost perfect agreement (κ > 0.906) in all but WT1, which had substantial agreement (κ = 0.848) when controlling for site. The minimal discrepancies were due to reporting variants of unknown significance (VUS) for the WT1 and TP53 genes. These results indicate that the various NGS methods used to analyze samples from patients with AML enrolled in the BAMT show high concordance, a reassuring finding given the wide use of NGS for therapeutic decision-making in AML.


Asunto(s)
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Laboratorios , Pronóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Mutación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
5.
Cancer ; 129(15): 2308-2320, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37078412

RESUMEN

BACKGROUND: Patients with acute myeloid leukemia (AML) who have tumor protein p53 (TP53) mutations or a complex karyotype have a poor prognosis, and hypomethylating agents are often used. The authors evaluated the efficacy of entospletinib, an oral inhibitor of spleen tyrosine kinase, combined with decitabine in this patient population. METHODS: This was a multicenter, open-label, phase 2 substudy of the Beat AML Master Trial (ClinicalTrials.gov identifier NCT03013998) using a Simon two-stage design. Eligible patients aged 60 years or older who had newly diagnosed AML with mutations in TP53 with or without a complex karyotype (cohort A; n = 45) or had a complex karyotype without TP53 mutation (cohort B; n = 13) received entospletinib 400 mg twice daily with decitabine 20 mg/m2 on days 1-10 every 28 days for up to three induction cycles, followed by up to 11 consolidation cycles, in which decitabine was reduced to days 1-5. Entospletinib maintenance was given for up to 2 years. The primary end point was complete remission (CR) and CR with hematologic improvement by up to six cycles of therapy. RESULTS: The composite CR rates for cohorts A and B were 13.3% (95% confidence interval, 5.1%-26.8%) and 30.8% (95% confidence interval, 9.1%-61.4%), respectively. The median duration of response was 7.6 and 8.2 months, respectively, and the median overall survival was 6.5 and 11.5 months, respectively. The study was stopped because the futility boundary was crossed in both cohorts. CONCLUSIONS: The combination of entospletinib and decitabine demonstrated activity and was acceptably tolerated in this patient population; however, the CR rates were low, and overall survival was short. Novel treatment strategies for older patients with TP53 mutations and complex karyotype remain an urgent need.


Asunto(s)
Leucemia Mieloide Aguda , Proteína p53 Supresora de Tumor , Humanos , Decitabina , Proteína p53 Supresora de Tumor/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Cariotipo , Resultado del Tratamiento , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
7.
Ther Innov Regul Sci ; 55(5): 926-935, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33997942

RESUMEN

Advances in genomic technologies and an increased understanding of the molecular pathogenesis of cancer have resulted in development of new effective, mutation-targeted therapies. In turn, these informed the development of Master Trial designs to test these therapies. The Beat Acute Myeloid Leukemia (BAML) Master Trial (Sponsor: The Leukemia & Lymphoma Society) tests several targeted therapies in patients aged ≥ 60 years with AML based on genomic profiling obtained within 7 days of study enrollment. We hypothesized that integrating operational strategies with new electronic technologies (e-technologies) might streamline the conduct and management of this Master Trial. BAML's 5 core operational strategies revolve around the guiding principle of "patients first." The e-technology platforms employed in BAML include: Clinical Oversight Platform: a central collaborative tool; e-Protocol/e-Source Upload/Electronic Data Capture Platform: digitizes the protocol, allows remote data monitoring, and collects/exports data in Study Data Tabulation Model format; and Data Review Platform: ingests data from different sources for clinical response and safety data reviews. The operational approaches, e-technologies and sponsor/contract research organization's (CRO) expertise together allow: the complexity and size of the BAML Master Trial to be better managed; near real-time study data oversight; better collaboration, communication and training; improved data collection, enhanced transmission and accessibility; data integration, review and generation of reports; while maintaining data privacy, and compliance. Initial e-technology challenges were overcome through training, learning, discipline and adjustment. In conclusion, to successfully manage Master Trials, significant time should be spent re-evaluating, improving and developing new operational approaches.Clinical Trial Registration: Clinical Trials.gov Identifier: NCT03013998. https://clinicaltrials.gov/ct2/show/NCT03013998 .


Asunto(s)
Leucemia Mieloide Aguda , Ensayos Clínicos como Asunto , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Tecnología
8.
Nat Med ; 26(12): 1852-1858, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33106665

RESUMEN

Acute myeloid leukemia (AML) is the most common diagnosed leukemia. In older adults, AML confers an adverse outcome1,2. AML originates from a dominant mutation, then acquires collaborative transformative mutations leading to myeloid transformation and clinical/biological heterogeneity. Currently, AML treatment is initiated rapidly, precluding the ability to consider the mutational profile of a patient's leukemia for treatment decisions. Untreated patients with AML ≥ 60 years were prospectively enrolled on the ongoing Beat AML trial (ClinicalTrials.gov NCT03013998 ), which aims to provide cytogenetic and mutational data within 7 days (d) from sample receipt and before treatment selection, followed by treatment assignment to a sub-study based on the dominant clone. A total of 487 patients with suspected AML were enrolled; 395 were eligible. Median age was 72 years (range 60-92 years; 38% ≥75 years); 374 patients (94.7%) had genetic and cytogenetic analysis completed within 7 d and were centrally assigned to a Beat AML sub-study; 224 (56.7%) were enrolled on a Beat AML sub-study. The remaining 171 patients elected standard of care (SOC) (103), investigational therapy (28) or palliative care (40); 9 died before treatment assignment. Demographic, laboratory and molecular characteristics were not significantly different between patients on the Beat AML sub-studies and those receiving SOC (induction with cytarabine + daunorubicin (7 + 3 or equivalent) or hypomethylation agent). Thirty-day mortality was less frequent and overall survival was significantly longer for patients enrolled on the Beat AML sub-studies versus those who elected SOC. A precision medicine therapy strategy in AML is feasible within 7 d, allowing patients and physicians to rapidly incorporate genomic data into treatment decisions without increasing early death or adversely impacting overall survival.


Asunto(s)
Biomarcadores de Tumor/genética , Genómica , Leucemia Mieloide Aguda/tratamiento farmacológico , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Citarabina/administración & dosificación , Citarabina/efectos adversos , Daunorrubicina/administración & dosificación , Daunorrubicina/efectos adversos , Femenino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Mutación/genética , Medicina de Precisión , Análisis de Supervivencia , Resultado del Tratamiento
9.
Blood ; 120(17): 3586-93, 2012 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-22968456

RESUMEN

The human ankyrin-1 gene (ANK1) contains 3 tissue-specific alternative promoters. We have shown previously that the erythroid-specific ankyrin 1 (ANK1E) core promoter contains a 5' DNase I hypersensitive site (HS) with barrier insulator function that prevents gene silencing in vitro and in vivo. Mutations in the ANK1E barrier region lead to decreased ANK1 mRNA levels and hereditary spherocytosis. In this report, we demonstrate a second ANK1E regulatory element located in an adjacent pair of DNase I HS located 5.6 kb 3' of the ANK1E promoter at the 3' boundary of an erythroid-specific DNase I-sensitive chromatin domain. The 3' regulatory element exhibits enhancer activity in vitro and in transgenic mice, and it has the histone modifications associated with an enhancer element. One of the ANK1E 3'HS contains an NF-E2 binding site that is required for enhancer function. We show that a chromatin loop brings the 3' enhancer and NF-E2 into proximity with the 5' barrier region including the ANK1E core promoter. These observations demonstrate a model for the tissue-specific activation of alternative promoters that may be applicable to the ∼ 30% of mammalian genes with alternative promoters that exhibit distinct expression patterns.


Asunto(s)
Ancirinas/genética , Cromatina/genética , Elementos de Facilitación Genéticos , Elementos Aisladores , Subunidad p45 del Factor de Transcripción NF-E2/genética , Regiones Promotoras Genéticas , Esferocitosis Hereditaria/genética , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Animales , Ancirinas/metabolismo , Sitios de Unión , Línea Celular Tumoral , Cromatina/química , Cromatina/metabolismo , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Células K562 , Ratones , Ratones Transgénicos , Subunidad p45 del Factor de Transcripción NF-E2/metabolismo , Especificidad de Órganos , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Esferocitosis Hereditaria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA