Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Biol Chem ; 299(8): 105002, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37394003

RESUMEN

Acrylamide, a common food contaminant, is metabolically activated to glycidamide, which reacts with DNA at the N7 position of dG, forming N7-(2-carbamoyl-2-hydroxyethyl)-dG (GA7dG). Owing to its chemical lability, the mutagenic potency of GA7dG has not yet been clarified. We found that GA7dG undergoes ring-opening hydrolysis to form N6-(2-deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5-[N-(2-carbamoyl-2-hydroxyethyl)formamido]pyrimidine (GA-FAPy-dG), even at neutral pH. Therefore, we aimed to examine the effects of GA-FAPy-dG on the efficiency and fidelity of DNA replication using an oligonucleotide carrying GA-FAPy-9-(2-deoxy-2-fluoro-ß-d-arabinofuranosyl)guanine (dfG), a 2'-fluorine substituted analog of GA-FAPy-dG. GA-FAPy-dfG inhibited primer extension by both human replicative DNA polymerase ε and the translesion DNA synthesis polymerases (Polη, Polι, Polκ, and Polζ) and reduced the replication efficiency by less than half in human cells, with single base substitution at the site of GA-FAPy-dfG. Unlike other formamidopyrimidine derivatives, the most abundant mutation was G:C > A:T transition, which was decreased in Polκ- or REV1-KO cells. Molecular modeling suggested that a 2-carbamoyl-2-hydroxyethyl group at the N5 position of GA-FAPy-dfG can form an additional H-bond with thymidine, thereby contributing to the mutation. Collectively, our results provide further insight into the mechanisms underlying the mutagenic effects of acrylamide.


Asunto(s)
Aductos de ADN , Mutágenos , Humanos , Acrilamidas , Desoxiguanosina , ADN , Daño del ADN , Replicación del ADN , Mutagénesis , Mutágenos/toxicidad , Contaminación de Alimentos
2.
Antibiotics (Basel) ; 11(5)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35625326

RESUMEN

The purpose of this study was to evaluate the defined daily doses (DDD)/1000 prescriptions/month (DPM) as a new indicator that can be used in pharmacies, and to describe antimicrobial use patterns in pharmacies nationwide in Japan. Dispensing volumes, number of prescriptions received, and facility information were obtained from 2638 pharmacies that participated in a survey. DPM was calculated based on the dispensing volume and number of prescriptions, which are routinely collected data that are simple to use. Use of third-generation cephalosporins, quinolones, and macrolides in pharmacies that received prescriptions primarily from hospitals or clinics decreased from January 2019 to January 2021. In particular, the antimicrobial use was higher in otorhinolaryngology departments than in other departments, despite a decrease in the antimicrobial use. In the linear multiple regression analysis, otorhinolaryngology department was independently associated with the third-generation cephalosporin, quinolone, and macrolide prescription in all periods. This study reveals for the first-time trends in antimicrobial use through a new indicator using the volume of drugs dispensed in pharmacies throughout Japan. Antimicrobial use differed by the medical department, suggesting the need to target interventions according to the department type.

3.
iScience ; 25(4): 104040, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35330687

RESUMEN

The XPC protein complex plays a central role in DNA lesion recognition for global genome nucleotide excision repair (GG-NER). Lesion recognition can be accomplished in either a UV-DDB-dependent or -independent manner; however, it is unclear how these sub-pathways are regulated in chromatin. Here, we show that histone deacetylases 1 and 2 facilitate UV-DDB-independent recruitment of XPC to DNA damage by inducing histone deacetylation. XPC localizes to hypoacetylated chromatin domains in a DNA damage-independent manner, mediated by its structurally disordered middle (M) region. The M region interacts directly with the N-terminal tail of histone H3, an interaction compromised by H3 acetylation. Although the M region is dispensable for in vitro NER, it promotes DNA damage removal by GG-NER in vivo, particularly in the absence of UV-DDB. We propose that histone deacetylation around DNA damage facilitates the recruitment of XPC through the M region, contributing to efficient lesion recognition and initiation of GG-NER.

4.
Sci Rep ; 10(1): 19704, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33184426

RESUMEN

The ubiquitin-proteasome system (UPS) plays crucial roles in regulation of various biological processes, including DNA repair. In mammalian global genome nucleotide excision repair (GG-NER), activation of the DDB2-associated ubiquitin ligase upon UV-induced DNA damage is necessary for efficient recognition of lesions. To date, however, the precise roles of UPS in GG-NER remain incompletely understood. Here, we show that the proteasome subunit PSMD14 and the UPS shuttle factor RAD23B can be recruited to sites with UV-induced photolesions even in the absence of XPC, suggesting that proteolysis occurs at DNA damage sites. Unexpectedly, sustained inhibition of proteasome activity results in aggregation of PSMD14 (presumably with other proteasome components) at the periphery of nucleoli, by which DDB2 is immobilized and sequestered from its lesion recognition functions. Although depletion of PSMD14 alleviates such DDB2 immobilization induced by proteasome inhibitors, recruitment of DDB2 to DNA damage sites is then severely compromised in the absence of PSMD14. Because all of these proteasome dysfunctions selectively impair removal of cyclobutane pyrimidine dimers, but not (6-4) photoproducts, our results indicate that the functional integrity of the proteasome is essential for the DDB2-mediated lesion recognition sub-pathway, but not for GG-NER initiated through direct lesion recognition by XPC.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Rayos Ultravioleta/efectos adversos , Línea Celular , ADN/metabolismo , ADN/efectos de la radiación , Daño del ADN , Reparación del ADN , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Proteolisis , Transactivadores/metabolismo
5.
DNA Repair (Amst) ; 87: 102771, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31911268

RESUMEN

The (6-4) pyrimidine-pyrimidone photoproduct [(6-4)PP] is a major DNA lesion induced by ultraviolet radiation. (6-4)PP induces complex mutations opposite its downstream bases, in addition to opposite 3' or 5' base, as has been observed through a site-specific translesion DNA synthesis (TLS) assay. The mechanism by which these mutations occur is not well understood. To elucidate the mechanisms underlying mutagenesis induced by (6-4)PP, we performed an intracellular TLS assay using a replicative vector with site-specific T(thymidine)-T (6-4)PP. Rev3-/-p53-/- mouse embryonic fibroblast (MEF) cells (defective in Polζ) were almost completely defective in bypassing T-T (6-4)PP, whereas both Rev1-/- and Polh-/-Poli-/-Polk-/- MEF cells (defective in Polη, Polι, and Polκ) presented bypassing activity comparable to that of wild-type cells, indicating that Y-family TLS polymerases are dispensable for bypassing activity, whereas Polζ plays an essential role, probably at the extension step. Among all cells tested, misincorporation occurred most frequently just beyond the lesion (position +1), indicating that the Polζ-dependent extension step is crucial for (6-4)PP-induced mutagenesis. We then examined the effects of sequence context on T-T (6-4)PP bypass using a series of T-T (6-4)PP templates with different sequences at position +1 or -1 to the lesion, and found that the dependency of T-T (6-4)PP bypass on Polζ is not sequence specific. However, the misincorporation frequency at position +1 differed significantly among these templates. The misincorporation of A at position +1 occurred frequently when a purine base was located at position -1. These results indicate that Polζ-dependent extension plays a major role in inducing base substitutions in (6-4)PP-induced mutagenesis, and its fidelity is affected by sequence context surrounding a lesion.


Asunto(s)
Daño del ADN , Dímeros de Pirimidina/metabolismo , Animales , ADN/efectos de la radiación , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Ratones , Ratones Noqueados , Mutagénesis , Mutación , Rayos Ultravioleta , ADN Polimerasa iota
6.
J Pharm Pract ; 33(1): 48-54, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29973115

RESUMEN

In 2006, a new 6-year educational system of pharmaceutical sciences was initiated to turn out strong clinical pharmacists in Japan. However, this new attempt is estimated not to fully satisfy the demand of clinical sites and the needs of the society in Japan. The objective of this study is to assess the performance of pharmaceutical services of community pharmacists in Illinois, United States, and Japan with the aim of comparing these services and barriers to pharmacy service delivery. The study designed as a cross-sectional, web-based study among US and Japan pharmacists. The survey asks several questions about demographic data, technical-related information and pharmaceutical services offered to patients, and pharmacy service performance. Almost 50 (92.6%) community pharmacists in United States reported that they dispensed more than 100 prescriptions in 1 day during the study period. In contrast, in Japan, community pharmacists (55.2%) dispensed 10 to 50 prescriptions during the same period. Half of the pharmacists in Japan either strongly agreed or agreed that they lack sufficient interpersonal and management skills. And many pharmacists agreed that lack of appropriate knowledge and insufficient training before graduation are major barriers to optimized pharmacy services in Japan. These findings can be used to promote discussion between Japanese pharmacists and stakeholders about pharmacy education programs in Japan and the future role of the community pharmacists in patient care in Japan.


Asunto(s)
Servicios Comunitarios de Farmacia/organización & administración , Educación en Farmacia/tendencias , Servicios Farmacéuticos/organización & administración , Adulto , Estudios Transversales , Femenino , Humanos , Illinois , Japón , Masculino , Persona de Mediana Edad , Farmacéuticos , Rol Profesional , Encuestas y Cuestionarios
7.
Genes Environ ; 41: 2, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30700997

RESUMEN

Nucleotide excision repair (NER) is a versatile DNA repair pathway, which can remove an extremely broad range of base lesions from the genome. In mammalian global genomic NER, the XPC protein complex initiates the repair reaction by recognizing sites of DNA damage, and this depends on detection of disrupted/destabilized base pairs within the DNA duplex. A model has been proposed that XPC first interacts with unpaired bases and then the XPD ATPase/helicase in concert with XPA verifies the presence of a relevant lesion by scanning a DNA strand in 5'-3' direction. Such multi-step strategy for damage recognition would contribute to achieve both versatility and accuracy of the NER system at substantially high levels. In addition, recognition of ultraviolet light (UV)-induced DNA photolesions is facilitated by the UV-damaged DNA-binding protein complex (UV-DDB), which not only promotes recruitment of XPC to the damage sites, but also may contribute to remodeling of chromatin structures such that the DNA lesions gain access to XPC and the following repair proteins. Even in the absence of UV-DDB, however, certain types of histone modifications and/or chromatin remodeling could occur, which eventually enable XPC to find sites with DNA lesions. Exploration of novel factors involved in regulation of the DNA damage recognition process is now ongoing.

8.
DNA Repair (Amst) ; 61: 76-85, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29247828

RESUMEN

Genotoxic agents cause modifications of genomic DNA, such as alkylation, oxidation, bulky adduct formation, and strand breaks, which potentially induce mutations and changes to the structure or number of genes. Majority of point mutations are generated during error-prone bypass of modified nucleotides (translesion DNA synthesis, TLS); however, when TLS fails, replication forks stalled at lesions eventually result in more lethal effects, formation of double-stranded breaks (DSBs). Here we compared sensitivities to various compounds among mouse embryonic fibroblasts derived from wild-type and knock-out mice lacking one of the three Y-family TLS DNA polymerases (Polη, Polι, and Polκ) or all of them (TKO). The compounds tested in this study include genotoxins such as methyl methanesulfonate (MMS) and nongenotoxins such as ammonium chloride. We found that TKO cells exhibited the highest sensitivities to most of the tested genotoxins, but not to the non-genotoxins. In order to quantitatively evaluate the hypersensitivity of TKO cells to different chemicals, we calculated ratios of half-maximal inhibitory concentration for WT and TKO cells. The ratios for 9 out of 10 genotoxins ranged from 2.29 to 5.73, while those for 5 nongenotoxins ranged from 0.81 to 1.63. Additionally, the two markers for DNA damage, ubiquitylated proliferating cell nuclear antigen and γ-H2AX after MMS treatment, were accumulated in TKO cells more greatly than in WT cells. Furthermore, following MMS treatment, TKO cells exhibited increased frequency of sister chromatid exchange compared with WT cells. These results indicated that the hypersensitivity of TKO cells to genotoxins resulted from replication fork stalling and subsequent DNA double-strand breaks, thus demonstrating that TKO cells should be useful for evaluating chemical genotoxicity.


Asunto(s)
ADN Polimerasa Dirigida por ADN/deficiencia , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Mutágenos/farmacología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Roturas del ADN de Doble Cadena , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Relación Dosis-Respuesta a Droga , Resistencia a Medicamentos/genética , Concentración 50 Inhibidora , Ratones , Pruebas de Mutagenicidad , Mutágenos/toxicidad , Intercambio de Cromátides Hermanas/efectos de los fármacos
9.
Genes Cells ; 22(4): 392-405, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28318075

RESUMEN

Thymine DNA glycosylase (TDG) is a base excision repair (BER) enzyme, which is implicated in correction of deamination-induced DNA mismatches, the DNA demethylation process and regulation of gene expression. Because of these pivotal roles associated, it is crucial to elucidate how the TDG functions are appropriately regulated in vivo. Here, we present evidence that the TDG protein undergoes degradation upon various types of DNA damage, including ultraviolet light (UV). The UV-induced degradation of TDG was dependent on proficiency in nucleotide excision repair and on CRL4CDT2 -mediated ubiquitination that requires a physical interaction between TDG and DNA polymerase clamp PCNA. Using the Tdg-deficient mouse embryonic fibroblasts, we found that ectopic expression of TDG compromised cellular survival after UV irradiation and repair of UV-induced DNA lesions. These negative effects on cellular UV responses were alleviated by introducing mutations in TDG that impaired its BER function. The expression of TDG induced a large-scale alteration in the gene expression profile independently of its DNA glycosylase activity, whereas a subset of genes was affected by the catalytic activity of TDG. Our results indicate the presence of BER-dependent and BER-independent functions of TDG, which are involved in regulation of cellular DNA damage responses and gene expression patterns.


Asunto(s)
Reparación del ADN , Timina ADN Glicosilasa/metabolismo , Secuencias de Aminoácidos , Línea Celular , Daño del ADN , Humanos , Mutación , Timina ADN Glicosilasa/química , Ubiquitina-Proteína Ligasas/metabolismo , Rayos Ultravioleta
10.
Genes Cells ; 22(3): 310-327, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28233440

RESUMEN

In the mammalian global genome nucleotide excision repair pathway, two damage recognition factors, XPC and UV-DDB, play pivotal roles in the initiation of the repair reaction. However, the molecular mechanisms underlying regulation of the lesion recognition process in the context of chromatin structures remain to be understood. Here, we show evidence that damage recognition factors tend to associate with chromatin regions devoid of certain types of acetylated histones. Treatment of cells with histone deacetylase inhibitors retarded recruitment of XPC to sites of UV-induced DNA damage and the subsequent repair process. Biochemical studies showed novel multifaceted interactions of XPC with histone H3, which were profoundly impaired by deletion of the N-terminal tail of histone H3. In addition, histone H1 also interacted with XPC. Importantly, acetylation of histone H3 markedly attenuated the interaction with XPC in vitro, and local UV irradiation of cells decreased the level of H3K27ac in the damaged areas. Our results suggest that histone deacetylation plays a significant role in the process of DNA damage recognition for nucleotide excision repair and that the localization and functions of XPC can be regulated by acetylated states of histones.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Línea Celular , Reparación del ADN , Histona Desacetilasas/fisiología , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas
11.
Gene ; 597: 1-9, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27771451

RESUMEN

Mammalian cells express two homologs of yeast Rad23, the so-called homolog of Rad23 (HR23) proteins. The HR23 proteins were identified more than two decades ago as factors involved in initiation of global genome nucleotide excision repair (GG-NER) along with their interacting partner, xeroderma pigmentosum group C (XPC) protein. Because the HR23 genes encode proteins harboring ubiquitin-like (UBL) domains at their N-termini and two ubiquitin-associated (UBA) domains in their central- and C-terminal regions, the link between HR23 proteins and proteolytic degradation has been widely explored by several methods, including yeast two-hybrid screening and co-affinity purification. To date, various HR23 protein partners have been identified, and these proteins are involved not only in DNA repair, but also in ubiquitin-dependent protein degradation, transcriptional regulation, and cell cycle control. In addition, establishment of mouse strains lacking the HR23 genes and RNA silencing of these genes in human cells demonstrated their significance in animal development and cell growth. Through these studies, the functional differences between the two HR23 proteins have been gradually revealed. Furthermore, recent comprehensive proteomic analyses will help to elucidate the functional protein-protein networks involving the HR23 proteins.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Animales , Apoptosis/fisiología , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/fisiología , Quinasa de Punto de Control 2/metabolismo , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Mamíferos , Neoplasias/genética , Enfermedades Neurodegenerativas/genética , Estabilidad Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Glob J Health Sci ; 8(9): 54314, 2016 9 01.
Artículo en Inglés | MEDLINE | ID: mdl-27157157

RESUMEN

This study examined the economic efficiency of the separation of prescription and dispensation medicines between doctors in medical institutions and pharmacists in pharmacies. The separation system in Japanese prefectures was examined with publicly available data (Ministry of Health, Labour and Welfare, 2012-2014; retrieved from http://www.mhlw.go.jp/topics/medias/year). We investigated whether the separation system reduces the number of medicines or the medication cost of a prescription because of separating the economic management between prescribing and dispensing and the effect of mutual observation between doctors and pharmacists. It is optional for Japanese medical institutions to participate in the separation system. Consequently, the spreading rate of the separation system in each administrative district is highly variable. We examined the separation system effect using the National Healthcare Insurance data for three years, 2012-2014. We tested whether the separation system ratio for each prefecture was significantly correlated to the medication price or the number of medicines on a prescription. If spreading the separation system influenced the price of prescribed daily medications or the number of medicines, the correlation would be significant. As a result, the medication price was significantly negatively correlated with the separation system ratio, but the number of medicines was not significant. Therefore, the separation system was effective in reducing daily medication cost but had little influence on reducing the number of daily medicines. This was observed over three years in Japan.

13.
Glob J Health Sci ; 8(1): 29-35, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-26234979

RESUMEN

This study used publicly available data to examine the effect of the separation of dispensing and prescribing medicines between pharmacists in pharmacies and doctors in medical institutions (the separation system) and the generic medicine replacement ratio on the cost of various medicines in Japanese prefectures. For Japanese medical institutions, participation in the separation system is optional. Consequently, the expansion rate of the separation system for each administrative district is highly variable. In our multiple regression analysis, the dependent variables were the costs of daily medicines, specifically, total, internal, external, and injection medicines, as well as medical devices, and the independent variables were the expansion rate of the separation system and generic medicine replacement ratio. The expansion rate of the separation system showed a significant negative partial correlation with the daily costs of total, internal, and injection medicines as well as medical devices. Moreover, the rate of replacing brand name medicines with generic medicines showed a significant negative partial correlation with the daily costs of total and internal medicines. However, external and injection medicines and medical devices did not because only a few or no generic products of these types were sold in the Japanese market. Otherwise, expansion of the separation system was effective in reducing medicine costs, except in the case of external medicines. This suggests that the cost efficiency effect of the separation system does not function all the time.


Asunto(s)
Medicamentos Genéricos/economía , Honorarios Farmacéuticos/estadística & datos numéricos , Medicamentos bajo Prescripción/economía , Servicios Comunitarios de Farmacia/economía , Medicamentos Genéricos/administración & dosificación , Humanos , Japón , Medicamentos bajo Prescripción/administración & dosificación
14.
DNA Repair (Amst) ; 29: 139-46, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25733082

RESUMEN

Xeroderma pigmentosum variant (XP-V) is a human rare inherited recessive disease, predisposed to sunlight-induced skin cancer, which is caused by deficiency in DNA polymerase η (Polη). Polη catalyzes accurate translesion synthesis (TLS) past pyrimidine dimers, the most prominent UV-induced lesions. DNA polymerase ι (Polι) is a paralog of Polη that has been suggested to participate in TLS past UV-induced lesions, but its function in vivo remains uncertain. We have previously reported that Polη-deficient and Polη/Polι double-deficient mice showed increased susceptibility to UV-induced carcinogenesis. Here, we investigated UV-induced mutation frequencies and spectra in the epidermal cells of Polη- and/or Polι-deficient mice. While Polη-deficient mice showed significantly higher UV-induced mutation frequencies than wild-type mice, Polι deficiency did not influence the frequencies in the presence of Polη. Interestingly, the frequencies in Polη/Polι double-deficient mice were statistically lower than those in Polη-deficient mice, although they were still higher than those of wild-type mice. Sequence analysis revealed that most of the UV-induced mutations in Polη-deficient and Polη/Polι double-deficient mice were base substitutions at dipyrimidine sites. An increase in UV-induced mutations at both G:C and A:T pairs associated with Polη deficiency suggests that Polη contributes to accurate TLS past both thymine- and cytosine-containing dimers in vivo. A significant decrease in G:C to A:T transition in Polη/Polι double-deficient mice when compared with Polη-deficient mice suggests that Polι is involved in error-prone TLS past cytosine-containing dimers when Polη is inactivated.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Epidermis/metabolismo , Dímeros de Pirimidina/metabolismo , Animales , ADN/metabolismo , ADN/efectos de la radiación , Daño del ADN , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , Células Epidérmicas , Epidermis/efectos de la radiación , Ratones , Ratones Noqueados , Mutación , Rayos Ultravioleta , ADN Polimerasa iota
15.
DNA Repair (Amst) ; 22: 112-22, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25128761

RESUMEN

The human POLH gene is responsible for the variant form of xeroderma pigmentosum (XP-V), a genetic disease highly susceptible to cancer on sun-exposed skin areas, and encodes DNA polymerase η (polη), which is specialized for translesion DNA synthesis (TLS) of UV-induced DNA photolesions. We constructed polη-deficient mice transgenic with lacZ mutational reporter genes to study the effect of Polh null mutation (Polh(-/-)) on mutagenesis in the skin after UVB irradiation. UVB induced lacZ mutations with remarkably higher frequency in the Polh(-/-) epidermis and dermis than in the wild-type (Polh(+/+)) and heterozygote. DNA sequences of a hundred lacZ mutants isolated from the epidermis of four UVB-exposed Polh(-/-) mice were determined and compared with mutant sequences from irradiated Polh(+)(/)(+) mice. The spectra of the mutations in the two genotypes were both highly UV-specific and dominated by C→T transitions at dipyrimidines, namely UV-signature mutations. However, sequence preferences of the occurrence of UV-signature mutations were quite different between the two genotypes: the mutations occurred at a higher frequency preferentially at the 5'-TCG-3' sequence context than at the other dipyrimidine contexts in the Polh(+/+) epidermis, whereas the mutations were induced remarkably and exclusively at the 3'-cytosine of almost all dipyrimidine contexts with no preference for 5'-TCG-3' in the Polh(-/-) epidermis. In addition, in Polh(-/-) mice, a small but remarkable fraction of G→T transversions was also observed exclusively at the 3'-cytosine of dipyrimidine sites, strongly suggesting that these transversions resulted not from oxidative damage but from UV photolesions. These results would reflect the characteristics of the error-prone TLS functioning in the bypass of UV photolesions in the absence of polη, which would be mediated by mechanisms based on the two-step model of TLS. On the other hand, the deamination model would explain well the mutation spectrum in the Polh(+/+) genotype.


Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , Epidermis/efectos de la radiación , Mutación Puntual , Rayos Ultravioleta , Animales , Ratones , Motivos de Nucleótidos
16.
Glob J Health Sci ; 6(4): 57-62, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24999122

RESUMEN

We studied how the separation of dispensing and prescribing of medicines between pharmacies and clinics (the "separation system") can reduce internal medicine costs. To do so, we obtained publicly available data by searching electronic databases and official web pages of the Japanese government and non-profit public service corporations on the Internet. For Japanese medical institutions, participation in the separation system is optional. Consequently, the expansion rate of the separation system for each of the administrative districts is highly variable. The data were subjected to multiple regression analysis; daily internal medicines were the objective variable and expansion rate of the separation system was the explanatory variable. A multiple regression analysis revealed that the expansion rate of the separation system and the rate of replacing brand name medicine with generic medicine showed a significant negative partial correlation with daily internal medicine costs. Thus, the separation system was as effective in reducing medicine costs as the use of generic medicines. Because of its medical economic efficiency, the separation system should be expanded, especially in Asian countries in which the system is underdeveloped.


Asunto(s)
Instituciones de Atención Ambulatoria/economía , Servicios Comunitarios de Farmacia/economía , Medicamentos Genéricos/economía , Honorarios Farmacéuticos/estadística & datos numéricos , Medicamentos bajo Prescripción/economía , Factores de Edad , Humanos , Japón
17.
J Photochem Photobiol B ; 116: 30-6, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-22940499

RESUMEN

8-Methoxypsoralen+UVA (ultraviolet light of 320-400 nm) known as PUVA has been in use for a number of years for the treatment of psoriasis and vitiligo. The treatment possibly works on the basis of UVA photoactivated 8-methoxypsoralen binding to DNA forming both single strand and double strand type damage. We have used Escherichia coli as model system in studying PUVA induced DNA damage and repair. It has been known for some time that the photoactivated 8-methoxypsoralen, besides intercalating with DNA, generates at least two reactive oxygen species (ROS): hydroxyl radicals and superoxide anions, and also singlet oxygen. In this study it has been found that, in E. coli, malate dehydrogenase, succinate dehydrogenase and NADH:ubiquinone oxidoreductase can protect cells from PUVA killing presumably by scavenging these ROS. Possible mechanisms have been proposed for these enzymes as cell protectors. Studies also suggest the potential for the use of PUVA in the treatment of a large number of human diseases. This study also finds that, unlike 8-methoxypsoralen, trioxsalen (4,5',8-trimethylpsoralen, another derivative of psoralens) does not generate ROS by UVA photoactivation; and hence the mode of action of trioxsalen and PUVA overlaps only in the binding of these molecules to DNA in the presence of UVA.


Asunto(s)
Reparación del ADN/genética , Escherichia coli/genética , Radical Hidroxilo/metabolismo , Metoxaleno/farmacología , Mutación , Terapia PUVA , Superóxido Dismutasa/metabolismo , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Enfermedad/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Escherichia coli/efectos de la radiación , Proteínas de Escherichia coli/genética , Depuradores de Radicales Libres/metabolismo , Superóxido Dismutasa/genética
18.
Genes Cells ; 17(2): 98-108, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22244149

RESUMEN

DNA polymerase η (Polη), whose gene mutation is responsible for the inherited disorder xeroderma pigmentosum variant (XP-V), carries out accurate and efficient translesion synthesis (TLS) across cyclobutane pyrimidine dimer (CPD). As Polη interacts with REV1, and REV1 interacts with other TLS polymerases including Polι, Polκ and Polζ, Polη may play a role in recruitment of these TLS polymerases at lesion site. But it is unclear whether UV sensitivity of XP-V patients is caused not only by defect of Polη activity but also by dysfunction of network between Polη and other TLS polymerases. Here, we examined whether the TLS polymerase network via Polη is important for replicative bypass of CPDs and DNA damage tolerance induced by UV in mouse cells. We observed that UV sensitivity of Polη-deficient mouse cells was moderately rescued by the expression of a catalytically inactive Polη. Moreover, this recovery of cellular UV sensitivity was mediated by the interaction between Polη and REV1. However, expression of the inactive mutant Polη was not able to suppress the incidence of UV-induced mutation observed in Polη-deficient cells. We propose the model that REV1 and Polκ are involved in DNA damage tolerance via Polη-REV1 interaction when Polη fails to bypass its cognate substrates.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Nucleotidiltransferasas/metabolismo , Animales , Línea Celular , Replicación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/deficiencia , ADN Polimerasa Dirigida por ADN/genética , Activación Enzimática/efectos de la radiación , Ratones , Unión Proteica , Especificidad por Sustrato , Rayos Ultravioleta , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/metabolismo
19.
Eur J Immunol ; 38(10): 2796-805, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18825746

RESUMEN

DNA polymerase eta (POLH) is required for the generation of A:T mutations during the somatic hypermutation of Ig genes in germinal center B cells. It remains unclear, however, whether POLH is a limiting factor for A:T mutations and how the absence of POLH might affect antibody affinity maturation. We found that the heterozygous Polh+/- mice exhibited a significant reduction in the frequency of A:T mutations in Ig genes, with each type of base substitutions at a level intermediate between the Polh+/+ and Polh(-/-) mice. These observations suggest that Polh is haplo-insufficient for the induction of A:T mutations in Ig genes. Intriguingly, there was also a reduction of C to T and G to A transitions in Polh+/- mice as compared with WT mice. Polh(-/-) mice produced decreased serum titers of high-affinity antibodies against a T-dependent antigen, which was associated with a significant reduction in the number of plasma cells secreting high-affinity antibodies. Analysis of the V region revealed that aa substitutions caused by A:T mutations were greatly reduced in Polh(-/-) mice. These results demonstrate that POLH is a limiting factor for A:T mutations and contributes to the efficient diversification of Ig genes and affinity maturation of antibodies.


Asunto(s)
Anticuerpos/inmunología , Afinidad de Anticuerpos , ADN Polimerasa Dirigida por ADN/metabolismo , Genes de Inmunoglobulinas , Mutación , Hipermutación Somática de Inmunoglobulina , Sustitución de Aminoácidos , Animales , Anticuerpos/sangre , ADN Polimerasa Dirigida por ADN/genética , Técnicas de Silenciamiento del Gen , Ratones , Ratones Mutantes , Células Plasmáticas/inmunología
20.
Virology ; 379(1): 45-54, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18656220

RESUMEN

Guinea pig cytomegalovirus (GPCMV) provides a useful model for studies of congenital CMV infection. During characterization of the GPCMV genome sequence, we identified two types of strains in a virus stock purchased from ATCC. One of them, GPCMV/del, lacks a 1.6 kb locus that positionally corresponds to murine CMV (MCMV) M129-M133. Growth of GPCMV/del in cell culture was marginally better than that of the other strain, GPCMV/full, which harbors the 1.6 kb locus. However, in animals infected intraperitoneally with virus stocks containing both strains, GPCMV/full disseminated more efficiently than GPCMV/del, including 200-fold greater viral load in salivary glands. Viral DNA, transcripts of the immediate-early 2 gene homolog, and viral antigens were more abundant in animals infected with GPCMV/full than in those infected with GPCMV/del. Although the observed phenomena have some similarity with the growth properties of MCMV strains defective in mck-1/mck-2(M129/131) and those defective in sgg(M132), no M129-M132 homologs were found in the 1.6 kb locus. Since one of the ORFs in the locus has a weak sequence similarity with HCMV UL130, which relates to cell tropism, further studies will be required to learn the mechanism for efficient GPCMV growth in animal.


Asunto(s)
Roseolovirus/crecimiento & desarrollo , Roseolovirus/patogenicidad , Eliminación de Secuencia , Replicación Viral , Animales , Antígenos Virales/biosíntesis , Técnicas de Cultivo de Célula , Línea Celular , ADN Viral/biosíntesis , ADN Viral/química , ADN Viral/genética , Genoma Viral , Cobayas , Hígado/patología , Datos de Secuencia Molecular , Filogenia , ARN Viral/biosíntesis , Roseolovirus/genética , Infecciones por Roseolovirus/virología , Glándulas Salivales/virología , Análisis de Secuencia de ADN , Homología de Secuencia , Bazo/patología , Ensayo de Placa Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA