Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Compr Rev Food Sci Food Saf ; 23(3): e13341, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38720590

RESUMEN

New food sources and production systems (NFPS) are garnering much attention, driven by international trade, changing consumer preferences, potential sustainability benefits, and innovations in climate-resilient food production systems. However, NFPS can introduce new challenges for food safety agencies and food manufacturers. Most food safety hazards linked to new foods have been identified in traditional foods. However, there can be some food safety challenges that are unique to new foods. New food ingredients, inputs, and processes can introduce unexpected contaminants. To realize the full potential of NFPS, there is a need for stakeholders from governments, the food industry, and the research community to collectively work to address and communicate the safety of NFPS products. This review outlines known food safety hazards associated with select NFPS products on the market, namely, plant-derived proteins, seaweeds, jellyfish, insects, microbial proteins, as well as foods derived from cell-based food production, precision fermentation, vertical farming, and 3D food printing. We identify common elements in emerging NFPS regulatory frameworks in various countries/regions. Furthermore, we highlight current efforts in harmonization of terminologies, use of recent scientific tools to fill in food safety knowledge gaps, and international multi-stakeholder collaborations to tackle safety challenges. Although there cannot be a one-size-fits-all approach when it comes to the regulatory oversight for ensuring the safety of NFPS, there is a need to develop consensus-based structured protocols or workflows among stakeholders to facilitate comprehensive, robust, and internationally harmonized approaches. These efforts increase consumers' confidence in the safety of new foods and contribute toward fair practices in the international trade of such foods.


Asunto(s)
Inocuidad de los Alimentos , Humanos , Animales , Abastecimiento de Alimentos/normas , Contaminación de Alimentos/prevención & control
2.
Bioorg Med Chem ; 79: 117167, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36682225

RESUMEN

Pseudomonas aeruginosa is widely attributed as the leading cause of hospital-acquired infections. Due to intrinsic antibiotic resistance mechanisms and the ability to form biofilms, P. aeruginosa infections are challenging to treat. P. aeruginosa employs multiple virulence mechanisms to establish infections, many of which are controlled by the global virulence regulator Vfr. An attractive strategy to combat P. aeruginosa infections is thus the use of anti-virulence compounds. Here, we report the discovery that FDA-approved drug auranofin attenuates virulence pathways in P. aeruginosa, including quorum sensing (QS) and Type IV pili (TFP). We show that auranofin acts via multiple targets, one of which being Vfr. Consistent with inhibition of QS and TFP expression, we show that auranofin attenuates biofilm maturation, and when used in combination with colistin, displays strong synergy in eradicating P. aeruginosa biofilms. Auranofin may have immediate applications as an anti-virulence drug against P. aeruginosa infections.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/metabolismo , Auranofina/farmacología , Auranofina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Factores de Virulencia/metabolismo , Factores de Virulencia/farmacología , Factores de Virulencia/uso terapéutico , Infecciones por Pseudomonas/tratamiento farmacológico , Biopelículas , Percepción de Quorum , Proteínas Bacterianas/farmacología
3.
Sci Rep ; 10(1): 6745, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317661

RESUMEN

Characterisation of protein function based solely on homology searches may overlook functions under specific environmental conditions, or the possibility of a protein having multiple roles. In this study we investigated the role of YtfB, a protein originally identified in a genome-wide screen to cause inhibition of cell division, and has demonstrated to localise to the Escherichia coli division site with some degree of glycan specificity. Interestingly, YtfB also shows homology to the virulence factor OapA from Haemophilus influenzae, which is important for adherence to epithelial cells, indicating the potential of additional function(s) for YtfB. Here we show that E. coli YtfB binds to N'acetylglucosamine and mannobiose glycans with high affinity. The loss of ytfB results in a reduction in the ability of the uropathogenic E. coli strain UTI89 to adhere to human kidney cells, but not to bladder cells, suggesting a specific role in the initial adherence stage of ascending urinary tract infections. Taken together, our results suggest a role for YtfB in adhesion to specific eukaryotic cells, which may be additional, or complementary, to its role in cell division. This study highlights the importance of understanding the possible multiple functions of proteins based on homology, which may be specific to different environmental conditions.


Asunto(s)
Adhesión Bacteriana/genética , Proteínas de Ciclo Celular/genética , División Celular/genética , Proteínas de Escherichia coli/genética , Escherichia coli Uropatógena/genética , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Secuencia de Carbohidratos , Adhesión Celular , Proteínas de Ciclo Celular/deficiencia , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Expresión Génica , Células HEK293 , Haemophilus influenzae/química , Haemophilus influenzae/metabolismo , Humanos , Mananos/química , Mananos/metabolismo , Filogenia , Polisacáridos/química , Polisacáridos/metabolismo , Unión Proteica , Infecciones Urinarias/microbiología , Infecciones Urinarias/patología , Escherichia coli Uropatógena/clasificación , Escherichia coli Uropatógena/citología , Escherichia coli Uropatógena/patogenicidad , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
4.
J Infect Dis ; 216(12): 1644-1654, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29045678

RESUMEN

Enterococcus faecalis is one of the most frequently isolated bacterial species in wounds yet little is known about its pathogenic mechanisms in this setting. Here, we used a mouse wound excisional model to characterize the infection dynamics of E faecalis and show that infected wounds result in 2 different states depending on the initial inoculum. Low-dose inocula were associated with short-term, low-titer colonization whereas high-dose inocula were associated with acute bacterial replication and long-term persistence. High-dose infection and persistence were also associated with immune cell infiltration, despite suppression of some inflammatory cytokines and delayed wound healing. During high-dose infection, the multiple peptide resistance factor, which is involved in resisting immune clearance, contributes to E faecalis fitness. These results comprehensively describe a mouse model for investigating E faecalis wound infection determinants, and suggest that both immune modulation and resistance contribute to persistent, nonhealing wounds.


Asunto(s)
Enterococcus faecalis/inmunología , Enterococcus faecalis/patogenicidad , Infecciones por Bacterias Grampositivas/patología , Evasión Inmune , Infección de Heridas/patología , Animales , Modelos Animales de Enfermedad , Enterococcus faecalis/crecimiento & desarrollo , Infecciones por Bacterias Grampositivas/microbiología , Masculino , Ratones Endogámicos C57BL , Infección de Heridas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA