Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Mol Cells ; : 100074, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901530

RESUMEN

Although binge alcohol-induced gut leakage has been studied extensively in the context of reactive oxygen species (ROS)-mediated signaling, it was recently revealed that post-transcriptional regulation plays an essential role as well. Ethanol (EtOH)-inducible cytochrome P450-2E1 (CYP2E1), a key enzyme in EtOH metabolism, promotes alcohol-induced hepatic steatosis and inflammatory liver disease, at least in part by mediating changes in intestinal permeability. For instance, gut leakage and elevated intestinal permeability to endotoxins have been shown to be regulated by enhancing CYP2E1 mRNA and CYP2E1 protein levels. Although it is understood that EtOH promotes CYP2E1 induction and activation, the mechanisms that regulate CYP2E1 expression in the context of intestinal damage remain poorly defined. Specific miRNAs, including miR-132, miR-212, miR-378, and miR-552, have been shown to repress the expression of CYP2E1, suggesting that these miRNAs contribute to EtOH-induced intestinal injury. Here, we have shown that CYP2E1 expression is regulated post-transcriptionally through miRNA-mediated degradation, as follows: 1) the RNA-binding protein AU-binding Factor 1 (AUF1) binds mature miRNAs, including CYP2E1-targeting miRNAs, and this binding modulates the degradation of corresponding target mRNAs upon EtOH treatment; 2) the Serine/Threonine kinase MST1 mediates oxidative stress-induced phosphorylation of AUF1. Those findings suggest that ROS-mediated signaling modulates AUF1/miRNA interaction through MST1-mediated phosphorylation. Thus, our study demonstrates the critical functions of AUF1 phosphorylation by MST1 in the decay of miRNAs targeting CYP2E1, the stabilization of CYP2E1 mRNA in the presence of EtOH, and the relationship of this pathway to subsequent intestinal injury.

2.
RNA Biol ; 21(1): 1-15, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38372062

RESUMEN

Although Argonaute (AGO) proteins have been the focus of microRNA (miRNA) studies, we observed AGO-free mature miRNAs directly interacting with RNA-binding proteins, implying the sophisticated nature of fine-tuning gene regulation by miRNAs. To investigate microRNA-binding proteins (miRBPs) globally, we analyzed PAR-CLIP data sets to identify RBP quaking (QKI) as a novel miRBP for let-7b. Potential existence of AGO-free miRNAs were further verified by measuring miRNA levels in genetically engineered AGO-depleted human and mouse cells. We have shown that QKI regulates miRNA-mediated gene silencing at multiple steps, and collectively serves as an auxiliary factor empowering AGO2/let-7b-mediated gene silencing. Depletion of QKI decreases interaction of AGO2 with let-7b and target mRNA, consequently controlling target mRNA decay. This finding indicates that QKI is a complementary factor in miRNA-mediated mRNA decay. QKI, however, also suppresses the dissociation of let-7b from AGO2, and slows the assembly of AGO2/miRNA/target mRNA complexes at the single-molecule level. We also revealed that QKI overexpression suppresses cMYC expression at post-transcriptional level, and decreases proliferation and migration of HeLa cells, demonstrating that QKI is a tumour suppressor gene by in part augmenting let-7b activity. Our data show that QKI is a new type of RBP implicated in the versatile regulation of miRNA-mediated gene silencing.


Asunto(s)
MicroARNs , Humanos , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Células HeLa , Silenciador del Gen , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , ARN Mensajero/genética
3.
J Magn Reson ; 358: 107600, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38039655

RESUMEN

We present a new program REDEN (Residual Decomposition of NMR peaks) designed to perform identification of peaks in NMR spectra. This integrated, cross-platform, open-source software visually assists with explicit peak picking through decomposition of NMR peaks on the frequency domain data. It provides a distinctive interactive workflow with iPick due to its integration with the POKY suite, providing users with a seamless and efficient experience. The decomposition of peaks operates in a chosen region of an NMR spectrum by multi-fitting simulated peaks with four lineshape fitting options as support, Gaussian, Lorentzian, a fast/optimized Lorentzian, and Pseudo-Voigt. Furthermore, REDEN provides a way to fine-tune for the users in two operating modes (Basic and Advanced). REDEN is pre-built in the POKY suite, which is available from https://poky.clas.ucdenver.edu.

4.
Biology (Basel) ; 12(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38132359

RESUMEN

Although ionizing radiation (IR) is widely used for therapeutic and research purposes, studies on low-dose ionizing radiation (LDIR) are limited compared with those on other IR approaches, such as high-dose gamma irradiation and ultraviolet irradiation. High-dose IR affects DNA damage response and nucleotide-protein crosslinking, among other processes; however, the molecular consequences of LDIR have been poorly investigated. Here, we developed a method to profile RNA species crosslinked to an RNA-binding protein, namely, human antigen R (HuR), using LDIR and high-throughput RNA sequencing. The RNA fragments isolated via LDIR-crosslinking and immunoprecipitation sequencing were crosslinked to HuR and protected from RNase-mediated digestion. Upon crosslinking HuR to target mRNAs such as PAX6, ZFP91, NR2F6, and CAND2, the transcripts degraded rapidly in human cell lines. Additionally, PAX6 and NR2F6 downregulation mediated the beneficial effects of LDIR on cell viability. Thus, our approach provides a method for investigating post-transcriptional gene regulation using LDIR.

5.
Cancer Rep (Hoboken) ; 6(1): e1685, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35859536

RESUMEN

BACKGROUND: Pediatric hepatocellular carcinoma (HCC) is a group of liver cancers whose mechanisms behind their pathogenesis and progression are poorly understood. AIM: We aimed to identify alterations in the expression of miRNAs and their putative target mRNAs in not only tumor tissues of patients with pediatric HCC but also in corresponding non-tumorous background livers by using liver tissues without underlying liver disease as a control. METHODS AND RESULTS: We performed a small-scale miRNA and mRNA profiling of pediatric HCC (consisting of fibrolamellar carcinoma [FLC] and non-FLC HCC) and paired liver tissues to identify miRNAs whose expression levels differed significantly from control livers without underlying liver disease. ToppMiR was used to prioritize both miRNAs and their putative target mRNAs in a gene-annotation network, and the mRNA profile was used to refine the prioritization. Our analysis generated prioritized lists of miRNAs and mRNAs from the following three sets of analyses: (a) pediatric HCC versus control; (b) FLC versus control; and (c) corresponding non-tumorous background liver tissues from the same patients with pediatric HCC versus control. No liver disease liver tissues were used as the control group for all analyses. Many miRNAs whose expressions were deregulated in pediatric HCC were consistent with their roles in adult HCC and/or other non-hepatic cancers. Our gene ontology analysis of target mRNAs revealed enrichment of biological processes related to the sustenance and propagation of cancer and significant downregulation of metabolic processes. CONCLUSION: Our pilot study indicates that alterations in miRNA-mRNA networks were detected in not only tumor tissues but also corresponding non-tumorous liver tissues from patients with pediatric HCC, suggesting multi-faceted roles of miRNAs in disease progression. Our results may lead to novel hypotheses for future large-scale studies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Adulto , Niño , Humanos , Neoplasias Hepáticas/genética , MicroARNs/genética , MicroARNs/metabolismo , Carcinoma Hepatocelular/genética , Proyectos Piloto , ARN Mensajero/genética , ARN Mensajero/metabolismo , Perfilación de la Expresión Génica
6.
Nat Commun ; 13(1): 5203, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-36057640

RESUMEN

Inflammatory cytokines are key signaling molecules that can promote an immune response, thus their RNA turnover must be tightly controlled during infection. Most studies investigate the RNA decay pathways in the cytosol or nucleoplasm but never focused on the nucleolus. Although this organelle has well-studied roles in ribosome biogenesis and cellular stress sensing, the mechanism of RNA decay within the nucleolus is not completely understood. Here, we report that the nucleolus is an essential site of inflammatory pre-mRNA instability during infection. RNA-sequencing analysis reveals that not only do inflammatory genes have higher intronic read densities compared with non-inflammatory genes, but their pre-mRNAs are highly enriched in nucleoli during infection. Notably, nucleolin (NCL) acts as a guide factor for recruiting cytosine or uracil (C/U)-rich sequence-containing inflammatory pre-mRNAs and the Rrp6-exosome complex to the nucleolus through a physical interaction, thereby enabling targeted RNA delivery to Rrp6-exosomes and subsequent degradation. Consequently, Ncl depletion causes aberrant hyperinflammation, resulting in a severe lethality in response to LPS. Importantly, the dynamics of NCL post-translational modifications determine its functional activity in phases of LPS. This process represents a nucleolus-dependent pathway for maintaining inflammatory gene expression integrity and immunological homeostasis during infection.


Asunto(s)
Nucléolo Celular , Lipopolisacáridos , Nucléolo Celular/metabolismo , Núcleo Celular , Lipopolisacáridos/metabolismo , ARN/metabolismo , Estabilidad del ARN
7.
Hepatol Commun ; 6(10): 2950-2963, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36000549

RESUMEN

Fibrolamellar hepatocellular carcinoma (FLC) is a disease that occurs in children and young adults. The development of FLC is associated with creation of a fusion oncoprotein DNAJB1-PKAc kinase, which activates multiple cancer-associated pathways. The aim of this study was to examine the role of human genomic regions, called cancer-enhancing genomic regions or aggressive liver cancer domains (CEGRs/ALCDs), in the development of FLC. Previous studies revealed that CEGRs/ALCDs are located in multiple oncogenes and cancer-associated genes, regularly silenced in normal tissues. Using the regulatory element locus intersection (RELI) algorithm, we searched a large compendium of chromatin immunoprecipitation-sequencing (ChIP) data sets and found that CEGRs/ALCDs contain regulatory elements in several human cancers outside of pediatric hepatic neoplasms. The RELI algorithm further identified components of the ß-catenin-TCF7L2/TCF4 pathway, which interacts with CEGRs/ALCDs in several human cancers. Particularly, the RELI algorithm found interactions of transcription factors and chromatin remodelers with many genes that are activated in patients with FLC. We found that these FLC-specific genes contain CEGRs/ALCDs, and that the driver of FLC, fusion oncoprotein DNAJB1-PKAc, phosphorylates ß-catenin at Ser675, resulting in an increase of ß-catenin-TCF7L2/TCF4 complexes. These complexes increase a large family of CEGR/ALCD-dependent collagens and oncogenes. The DNAJB1-PKAc-ß-catenin-CEGR/ALCD pathway is preserved in lung metastasis. The inhibition of ß-catenin in FLC organoids inhibited the expression of CEGRs/ALCDs-dependent collagens and oncogenes, preventing the formation of the organoid's structure. Conclusion: This study provides a rationale for the development of ß-catenin-based therapy for patients with FLC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , beta Catenina/metabolismo , Carcinoma Hepatocelular/genética , Cromatina , Regulación Neoplásica de la Expresión Génica/genética , Genoma Humano , Genómica , Proteínas del Choque Térmico HSP40/genética , Humanos , Neoplasias Hepáticas/genética , Proteínas de Fusión Oncogénica/genética , Factores de Transcripción/genética , beta Catenina/genética
8.
J Lipid Atheroscler ; 11(1): 55-72, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35118022

RESUMEN

OBJECTIVE: Glucagon in mammals and its homolog (adipokinetic hormone [AKH] in Drosophila melanogaster) are peptide hormones which regulate lipid metabolism by breaking down triglycerides. Although regulatory mechanisms of glucagon and AKH expression have been widely studied, post-transcriptional gene expression of glucagon has not been investigated thoroughly. In this study, we aimed to profile proteins binding with Gcg messenger RNA (mRNA) in mouse and Akh mRNA in Drosophila. METHODS: Drosophila Schneider 2 (S2) and mouse 3T3-L1 cell lysates were utilized for affinity pull down of Akh and Gcg mRNA respectively using biotinylated anti-sense DNA oligoes against target mRNAs. Mass spectrometry and computational network analysis revealed mRNA-interacting proteins residing in functional proximity. RESULTS: We observed that 1) 91 proteins interact with Akh mRNA from S2 cell lysates, 2) 34 proteins interact with Gcg mRNA from 3T3-L1 cell lysates. 3) Akh mRNA interactome revealed clusters of ribosomes and known RNA-binding proteins (RBPs). 4) Gcg mRNA interactome revealed mRNA-binding proteins including Plekha7, zinc finger protein, carboxylase, lipase, histone proteins and a cytochrome, Cyp2c44. 5) Levels of Gcg mRNA and its interacting proteins are elevated in skeletal muscles isolated from old mice compared to ones from young mice. CONCLUSION: Akh mRNA in S2 cells are under active translation in a complex of RBPs and ribosomes. Gcg mRNA in mouse precursor adipocyte is in a condition distinct from Akh mRNA due to biochemical interactions with a subset of RBPs and histones. We anticipate that our study contributes to investigating regulatory mechanisms of Gcg and Akh mRNA decay, translation, and localization.

9.
Cell Metab ; 33(12): 2380-2397.e9, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879239

RESUMEN

Accelerated glycolysis is the main metabolic change observed in cancer, but the underlying molecular mechanisms and their role in cancer progression remain poorly understood. Here, we show that the deletion of the long noncoding RNA (lncRNA) Neat1 in MMTV-PyVT mice profoundly impairs tumor initiation, growth, and metastasis, specifically switching off the penultimate step of glycolysis. Mechanistically, NEAT1 directly binds and forms a scaffold bridge for the assembly of PGK1/PGAM1/ENO1 complexes and thereby promotes substrate channeling for high and efficient glycolysis. Notably, NEAT1 is upregulated in cancer patients and correlates with high levels of these complexes, and genetic and pharmacological blockade of penultimate glycolysis ablates NEAT1-dependent tumorigenesis. Finally, we demonstrate that Pinin mediates glucose-stimulated nuclear export of NEAT1, through which it exerts isoform-specific and paraspeckle-independent functions. These findings establish a direct role for NEAT1 in regulating tumor metabolism, provide new insights into the Warburg effect, and identify potential targets for therapy.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glucólisis , Humanos , Ratones , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
10.
Methods Mol Biol ; 2372: 11-18, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34417738

RESUMEN

Mammalian cells express a wide range of transcripts, some protein-coding RNAs (mRNA), and many noncoding (nc) RNAs. Long (l)ncRNAs can modulate protein expression patterns by regulating gene transcription, pre-mRNA splicing, mRNA export, mRNA degradation, protein translation, and protein ubiquitination. Given the growing recognition that lncRNAs have a robust impact upon gene expression, there is rising interest in elucidating the levels and regulation of lncRNAs. A number of high-throughput methods have been developed recently to map the interaction of lncRNAs and RNA-binding proteins (RBPs). However, few of these approaches are suitable for mapping and quantifying RBP-lncRNA interactions. Here, we describe the recently developed method CLIP-qPCR (crosslinking and immunoprecipitation followed by reverse transcription and quantitative PCR) for mapping and quantifying interactions of lncRNAs with canonical and non-canonical RBPs.


Asunto(s)
Inmunoprecipitación , Animales , Reacción en Cadena de la Polimerasa , Estabilidad del ARN , ARN Largo no Codificante/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
11.
Life Sci Alliance ; 4(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34272328

RESUMEN

Heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1) is a tumor suppressor protein that binds site- and structure-specifically to RNA sequences to regulate mRNA stability, facilitate alternative splicing, and suppress protein translation on several metastasis-associated mRNAs. Here, we show that hnRNP E1 binds polycytosine-rich DNA tracts present throughout the genome, including those at promoters of several oncogenes and telomeres and monitors genome integrity. It binds DNA in a site- and structure-specific manner. hnRNP E1-knockdown cells displayed increased DNA damage signals including γ-H2AX at its binding sites and also showed increased mutations. UV and hydroxyurea treatment of hnRNP E1-knockdown cells exacerbated the basal DNA damage signals with increased cell cycle arrest, activation of checkpoint proteins, and monoubiquitination of proliferating cell nuclear antigen despite no changes in deubiquitinating enzymes. DNA damage caused by genotoxin treatment localized to hnRNP E1 binding sites. Our work suggests that hnRNP E1 facilitates functions of DNA integrity proteins at polycytosine tracts and monitors DNA integrity at these sites.


Asunto(s)
Sitios de Unión , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Inestabilidad Genómica , Poli C , Proteínas de Unión al ARN/metabolismo , Animales , Secuencia de Bases , ADN/química , ADN/genética , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Humanos , Ratones , Modelos Biológicos , Mutación , Tasa de Mutación , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Poli C/química , Unión Proteica , Transducción de Señal
12.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466722

RESUMEN

Post-transcriptional gene regulation is an important step in the regulation of eukaryotic gene expression. Subcellular compartmentalization of RNA species plays a crucial role in the control of mRNA turnover, spatial restriction of protein synthesis, and the formation of macromolecular complexes. Although long noncoding RNAs (lncRNAs) are one of the key regulators of post-transcriptional gene expression, it is not heavily studied whether localization of lncRNAs in subcellular organelles has functional consequences. Here, we report on mitochondrial lncRNAs whose expression fluctuates in the process of cellular senescence. One of the mitochondrial lncRNAs, RPPH1 RNA, is overexpressed and accumulates in mitochondria of senescent fibroblasts, possibly modulated by the RNA-binding protein AUF1. In addition, RPPH1 RNA overexpression promotes spontaneous replicative cellular senescence in proliferating fibroblasts. Using MS2 aptamer-based RNA affinity purification strategy, we identified putative target mRNAs of RPPH1 RNA and revealed that partial complementarity of RPPH1 RNA to its target mRNAs prevents those mRNAs decay in proliferating fibroblasts. Altogether, our results demonstrate the role of mitochondrial noncoding RNA in the regulation of mRNA stability and cellular senescence.


Asunto(s)
Senescencia Celular , ARN Largo no Codificante/genética , ARN Mitocondrial/genética , Línea Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , ARN Mensajero/genética , Regulación hacia Arriba
13.
Cell Mol Life Sci ; 78(5): 2315-2328, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32975614

RESUMEN

Pattern-recognition receptors including Toll-like receptors (TLRs) recognize invading pathogens and trigger an immune response in mammals. Here we show that mammalian ste20-like kinase 1/serine/threonine kinase 4 (MST1/STK4) functions as a negative regulator of lipopolysaccharide (LPS)-induced activation of the TLR4-NF-κB signaling pathway associated with inflammation. Myeloid-specific genetic ablation of MST1/STK4 increased the susceptibility of mice to LPS-induced septic shock. Ablation of MST1/STK4 also enhanced NF-κB activation triggered by LPS in bone marrow-derived macrophages (BMDMs), leading to increased production of proinflammatory cytokines by these cells. Furthermore, MST1/STK4 inhibited TRAF6 autoubiquitination as well as TRAF6-mediated downstream signaling induced by LPS. In addition, we found that TRAF6 mediates the LPS-induced activation of MST1/STK4 by catalyzing its ubiquitination, resulting in negative feedback regulation by MST1/STK4 of the LPS-induced pathway leading to cytokine production in macrophages. Together, our findings suggest that MST1/STK4 functions as a negative modulator of the LPS-induced NF-κB signaling pathway during macrophage activation.


Asunto(s)
Macrófagos/metabolismo , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Células Cultivadas , Citocinas/sangre , Citocinas/genética , Citocinas/metabolismo , Células HEK293 , Humanos , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/genética , Sepsis/sangre , Sepsis/genética , Sepsis/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Transducción de Señal/efectos de los fármacos , Análisis de Supervivencia , Factor 6 Asociado a Receptor de TNF/genética , Receptor Toll-Like 4/genética , Ubiquitinación/efectos de los fármacos
14.
RNA ; 26(11): 1603-1620, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32675111

RESUMEN

Cellular quiescence and cell cycle reentry regulate vital biological processes such as cellular development and tissue homeostasis and are controlled by precise regulation of gene expression. The roles of long noncoding RNAs (lncRNAs) during these processes remain to be elucidated. By performing genome-wide transcriptome analyses, we identify differential expression of several hundreds of lncRNAs, including a significant number of the less-characterized class of microRNA-host-gene (MIRHG) lncRNAs or lnc-MIRHGs, during cellular quiescence and cell cycle reentry in human diploid fibroblasts. We observe that MIR222HG lncRNA displays serum-stimulated RNA processing due to enhanced splicing of the host nascent pri-MIR222HG transcript. The pre-mRNA splicing factor SRSF1 negatively regulates the microprocessor-catalyzed cleavage of pri-miR-222, thereby increasing the cellular pool of the mature MIR222HG Association of SRSF1 to pri-MIR222HG, including to a mini-exon, which partially overlaps with the primary miR-222 precursor, promotes serum-stimulated splicing over microRNA processing of MIR222HG Further, we observe that the increased levels of spliced MIR222HG in serum-stimulated cells promote the cell cycle reentry post quiescence in a microRNA-independent manner. MIR222HG interacts with DNM3OS, another lncRNA whose expression is elevated upon serum-stimulation, and promotes cell cycle reentry. The double-stranded RNA binding protein ILF3/2 complex facilitates MIR222HG:DNM3OS RNP complex assembly, thereby promoting DNM3OS RNA stability. Our study identifies a novel mechanism whereby competition between the splicing and microprocessor machinery modulates the serum-induced RNA processing of MIR222HG, which dictates cell cycle reentry.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Pulmón/citología , ARN Largo no Codificante/genética , Factores de Empalme Serina-Arginina/metabolismo , Suero/química , Ciclo Celular , Línea Celular , Fibroblastos/química , Fibroblastos/citología , Células HEK293 , Humanos , Pulmón/química , Proteína del Factor Nuclear 45/metabolismo , Proteínas del Factor Nuclear 90/metabolismo , Procesamiento Postranscripcional del ARN , Empalme del ARN , Análisis de Secuencia de ARN , Imagen Individual de Molécula , Regulación hacia Arriba , Secuenciación del Exoma
15.
J Cachexia Sarcopenia Muscle ; 11(5): 1336-1350, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32495509

RESUMEN

BACKGROUND: The microRNAs (miRNAs) down-regulated in aged mouse skeletal muscle were mainly clustered within the delta-like homologue 1 and the type III iodothyronine deiodinase (Dlk1-Dio3) genomic region. Although clustered miRNAs are coexpressed and regulate multiple targets in a specific signalling pathway, the function of miRNAs in the Dlk1-Dio3 cluster in muscle aging is largely unknown. We aimed to ascertain whether these miRNAs play a common role to regulate age-related muscle atrophy. METHODS: To examine anti-atrophic effect of miRNAs, we individually transfected 42 miRNA mimics in fully differentiated myotubes and analysed their diameters. The luciferase reporter assay using target 3' untranslated region (UTR) and RNA pull-down assay were employed to ascertain the target predicted by the TargetScan algorithm. To investigate the therapeutic potential of the miRNAs in vivo, we generated adeno-associated virus (AAV) serotype 9 expressing green fluorescent protein (GFP) (AAV9-GFP) bearing miR-376c-3p and infected it into the tibialis anterior muscle of old mice. We performed morphometric analysis and measured ex vivo isometric force using a force transducer. Human gluteus maximus muscle tissues (ages ranging from 25 to 80 years) were used to investigate expression levels of the conserved miRNAs in the Dlk1-Dio3 cluster. RESULTS: We found that the majority of miRNAs (33 out of 42 tested) in the cluster induced anti-atrophic phenotypes in fully differentiated myotubes with increasing their diameters. Eighteen of these miRNAs, eight of which are conserved in humans, harboured predicted binding sites in the 3' UTR of muscle atrophy gene-1 (Atrogin-1) encoding a muscle-specific E3 ligase. Direct interactions were identified between these miRNAs and the 3' UTR of Atrogin-1, leading to repression of Atrogin-1 and thereby induction of eIF3f protein content, in both human and mouse skeletal muscle cells. Intramuscular delivery of AAV9 expressing miR-376c-3p, one of the most effective miRNAs in myotube thickening, dramatically ameliorated skeletal muscle atrophy and improved muscle function, including isometric force, twitch force, and fatigue resistance in old mice. Consistent with our findings in mice, the expression of miRNAs in the cluster was significantly down-regulated in human muscle from individuals > 50 years old. CONCLUSIONS: Our study suggests that genetic intervention using a muscle-directed miRNA delivery system has therapeutic efficacy in preventing Atrogin-1-mediated muscle atrophy in sarcopenia.


Asunto(s)
MicroARNs , Animales , Proteínas de Unión al Calcio/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular , Yoduro Peroxidasa , Proteínas de la Membrana , Ratones , MicroARNs/genética , Fibras Musculares Esqueléticas , Atrofia Muscular/genética , Atrofia Muscular/terapia
16.
Methods Mol Biol ; 2106: 151-159, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31889256

RESUMEN

The Argonaute (AGO) family of proteins plays an essential role in the process of microRNA (miRNA)-mediated gene silencing. More specifically, they are the only known proteins to associate directly with miRNAs within the RNA-induced silencing complex (RISC). Given the importance of miRNA regulation of the transcriptome and its vast implications for human disease, it is essential to understand the molecular underpinnings of miRNA-AGO interactions. Although there are methods available to investigate mature miRNA decay and loading onto AGO2, no feasible method exists to detail the opposite process: release of miRNA from associated AGO proteins. In this chapter, we describe in detail a methodology derived from biochemical approaches, which can be used to quantify the release of any given miRNA from AGOs.


Asunto(s)
Proteínas Argonautas/metabolismo , MicroARNs/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Animales , Línea Celular , Humanos , Cinética , Unión Proteica
17.
Hepatology ; 72(2): 609-625, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31849082

RESUMEN

BACKGROUND AND AIMS: Mitochondrial double-stranded RNA (mtdsRNA) and its innate immune responses have been reported previously; however, mtdsRNA generation and its effects on alcohol-associated liver disease (ALD) remain unclear. Here, we report that hepatic mtdsRNA stimulates toll-like receptor 3 (TLR3) in Kupffer cells through the exosome (Exo) to enhance interleukin (IL)-17A (IL-17A) production in ALD. APPROACH AND RESULTS: Following binge ethanol (EtOH) drinking, IL-17A production primarily increased in γδ T cells of wild-type (WT) mice, whereas the production of IL-17A was mainly facilitated by CD4+ T cells in acute-on-chronic EtOH consumption. These were not observed in TLR3 knockout (KO) or Kupffer cell-depleted WT mice. The expression of polynucleotide phosphorylase, an mtdsRNA-restricting enzyme, was significantly decreased in EtOH-exposed livers and hepatocytes of WT mice. Immunostaining revealed that mtdsRNA colocalized with the mitochondria in EtOH-treated hepatocytes from WT mice and healthy humans. Bioanalyzer analysis revealed that small-sized RNAs were enriched in EtOH-treated Exos (EtOH-Exos) rather than EtOH-treated microvesicles in hepatocytes of WT mice and humans. Quantitative real-time PCR and RNA sequencing analyses indicated that mRNA expression of mitochondrial genes encoded by heavy and light strands was robustly increased in EtOH-Exos from mice and humans. After direct treatment with EtOH-Exos, IL-1ß expression was significantly increased in WT Kupffer cells but not in TLR3 KO Kupffer cells, augmenting IL-17A production of γδ T cells in mice and humans. CONCLUSIONS: EtOH-mediated generation of mtdsRNA contributes to TLR3 activation in Kupffer cells through exosomal delivery. Consequently, increased IL-1ß expression in Kupffer cells triggers IL-17A production in γδ T cells at the early stage that may accelerate IL-17A expression in CD4+ T cells in the later stage of ALD. Therefore, mtdsRNA and TLR3 may function as therapeutic targets in ALD.


Asunto(s)
Exosomas/genética , Interleucina-17/biosíntesis , Macrófagos del Hígado/metabolismo , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , ARN Bicatenario/fisiología , ARN Mitocondrial/fisiología , Receptor Toll-Like 3/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
18.
Sci Rep ; 9(1): 4692, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30886169

RESUMEN

Because exosomes have gained attention as a source of biomarkers, we investigated if miRNAs in exosomes (exo-miRs) can report the disease progression of organ injury. Using rat renal ischemia-reperfusion injury (IRI) as a model of acute kidney injury (AKI), we determined temporally-released exo-miRs in urine during IRI and found that these exo-miRs could reliably mirror the progression of AKI. From the longitudinal measurements of miRNA expression in kidney and urine, we found that release of exo- miRs was a regulated sorting process. In the injury state, miR-16, miR-24, and miR-200c were increased in the urine. Interestingly, expression of target mRNAs of these exo-miRs was significantly altered in renal medulla. Next, in the early recovery state, exo-miRs (miR-9a, miR-141, miR-200a, miR-200c, miR-429), which share Zeb1/2 as a common target mRNA, were upregulated together, indicating that they reflect TGF-ß-associated renal fibrosis. Finally, release of exo-miRs (miR-125a, miR-351) was regulated by TGF-ß1 and was able to differentiate the sham and IRI even after the injured kidneys were recovered. Altogether, these data indicate that exo-miRs released in renal IRI are associated with TGF-ß signaling. Temporal release of exo-miRs which share targets might be a regulatory mechanism to control the progression of AKI.


Asunto(s)
Lesión Renal Aguda/diagnóstico , Exosomas/genética , Médula Renal/fisiología , MicroARNs/genética , Factor de Crecimiento Transformador beta/metabolismo , Animales , Línea Celular , Progresión de la Enfermedad , Fibrosis , Perfilación de la Expresión Génica , Humanos , Médula Renal/patología , Masculino , MicroARNs/análisis , Técnicas de Diagnóstico Molecular , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Orina/química
19.
Mol Cell ; 73(6): 1138-1149.e6, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901564

RESUMEN

The nuclear factor (NF)-κB pathway plays a central role in inflammatory and immune responses, with aberrant activation of NF-κB signaling being implicated in various human disorders. Here, we show that mammalian ste20-like kinase 1 (MST1) is a previously unrecognized component of the tumor necrosis factor α (TNFα) receptor 1 signaling complex (TNF-RSC) and attenuates TNFα-induced NF-κB signaling. Genetic ablation of MST1 in mouse embryonic fibroblasts and bone marrow-derived macrophages potentiated the TNFα-induced increase in IκB kinase (IKK) activity, as well as the expression of NF-κB target genes. TNFα induced the recruitment of MST1 to TNF-RSC and its interaction with HOIP, the catalytic component of the E3 ligase linear ubiquitin assembly complex (LUBAC). Furthermore, MST1 activated in response to TNFα stimulation mediates the phosphorylation of HOIP and thereby inhibited LUBAC-dependent linear ubiquitination of NEMO/IKKγ. Together, our findings suggest that MST1 negatively regulates TNFα-induced NF-κB signaling by targeting LUBAC.


Asunto(s)
Fibroblastos/efectos de los fármacos , Macrófagos/efectos de los fármacos , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Fibroblastos/enzimología , Células HEK293 , Humanos , Quinasa I-kappa B/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/enzimología , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multienzimáticos , Fosforilación , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/efectos de los fármacos , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
20.
Biochem Biophys Res Commun ; 504(1): 89-95, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30180947

RESUMEN

The decapping exoribonuclease DXO functions in pre-mRNA capping quality control, and shows multiple biochemical activities such as decapping, deNADding, pyrophosphohydrolase, and 5'-3' exoribonuclease activities. Previous studies revealed the molecular mechanisms of DXO based on the structures in complexes with a product, substrate mimic, cap analogue, and 3'-NADP+. Despite several reports on the substrate-specific reaction mechanism, the inhibitory mechanism of DXO remains elusive. Here, we demonstrate that adenosine 3', 5'-bisphosphate (pAp), a known inhibitor of the 5'-3' exoribonuclease Xrn1, inhibits the nuclease activity of DXO based on the results of structural and biochemical experiments. We determined the crystal structure of the DXO-pAp-Mg2+ complex at 1.8 Šresolution. In comparison with the DXO-RNA product complex, the position of pAp is well superimposed with the first nucleotide of the product RNA in the vicinity of two magnesium ions. Furthermore, biochemical assays showed that the inhibition by pAp is comparable between Xrn1 and DXO. Collectively, these structural and biochemical studies reveal that pAp inhibits the activities of DXO by occupying the active site to act as a competitive inhibitor.


Asunto(s)
Adenosina Difosfato/química , Endorribonucleasas/química , Exorribonucleasas/química , Adenosina Difosfato/metabolismo , Sitios de Unión , Endorribonucleasas/antagonistas & inhibidores , Endorribonucleasas/metabolismo , Exorribonucleasas/metabolismo , Magnesio/química , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA