Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mol Pharm ; 21(2): 970-981, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38206824

RESUMEN

Biodistribution tracks compounds or molecules of interest in vivo to understand a compound's anticipated efficacy and safety. Nanoparticles deliver nucleic acid and drug payloads and enhance tumor permeability due to multiple properties such as high surface area to volume ratio, surface functionalization, and modifications. Studying the in vivo biodistribution of nanoparticles documents the effectiveness and safety of nanoparticles and facilitates a more application-driven approach for nanoparticle development that allows for more successful translation into clinical use. In this study, we present a relatively simple method to determine the biodistribution of magnetic iron nanoparticles in mice. In vitro, cells take up branched amphiphilic peptide-coated magnetic nanobeads (BAPc-MNBs) like their counterparts, i.e., branched amphiphilic peptide capsules (BAPCs) with a hollow water-filled core. Both BAPc-MNBs and BAPCs have widespread applications as a nanodelivery system. We evaluated the BAPc-MNBs tissue distribution in wild-type mice injected intravenously (i.v.), intraperitoneally (i.p.), or orally gavaged to understand the biological interactions and to further the development of branched amphiphilic peptide-based nanoparticles. The magnetic nanoparticles allowed collection of the BAPc-MNBs from multiple organs by magnetic bead sorting, followed by a high-throughput screening for iron content. When injected i.v., nanoparticles were distributed widely to various organs before elimination from the system via the intestines in feces. The spleen accumulated the highest amount of BAPc-MNBs in mice administered NPs via i.v. and i.p. but not via oral gavage. Taken together, these data demonstrate that the magnetic sorting not only allowed quantification of the BAPc-MNBs but also identified the distribution of BAPc-MNBs after distinct administration methods.


Asunto(s)
Bencenosulfonatos , Nanopartículas de Magnetita , Nanopartículas , Ratones , Animales , Distribución Tisular , Péptidos/química , Nanopartículas/química , Nanopartículas Magnéticas de Óxido de Hierro , Nanopartículas de Magnetita/química
2.
Materials (Basel) ; 17(2)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38255472

RESUMEN

With the goal of developing lightweight Al-Ti-containing multicomponent alloys with excellent mechanical strength, an Al-Ti-Cu-Co alloy with a phase-separated microstructure was prepared. The granulometry of metal particles was reduced using planetary ball milling. The particle size of the metal powders decreased as the ball milling time increased from 5, 7, to 15 h (i.e., 6.6 ± 6.4, 5.1 ± 4.3, and 3.2 ± 2.1 µm, respectively). The reduction in particle size and the dispersion of metal powders promoted enhanced diffusion during the spark plasma sintering process. This led to the micro-phase separation of the (Cu, Co)2AlTi (L21) phase, and the formation of a Cu-rich phase with embedded nanoscale Ti-rich (B2) precipitates. The Al-Ti-Cu-Co alloys prepared using powder metallurgy through the spark plasma sintering exhibited different hardnesses of 684, 710, and 791 HV, respectively, while maintaining a relatively low density of 5.8-5.9 g/cm3 (<6 g/cm3). The mechanical properties were improved due to a decrease in particle size achieved through increased ball milling time, leading to a finer grain size. The L21 phase, consisting of (Cu, Co)2AlTi, is the site of basic hardness performance, and the Cu-rich phase is the mechanical buffer layer between the L21 and B2 phases. The finer network structure of the Cu-rich phase also suppresses brittle fracture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA