Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Antimicrob Agents ; : 107274, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002701

RESUMEN

BACKGROUND: Tuberculosis is a highly contagious disease caused by Mycobacterium tuberculosis, and the increase in antibiotic resistance threatens humankind. Therefore, there is an urgent need to develop new anti-tuberculosis drugs that can overcome the limitations of existing drugs. Here, we report the anti-tuberculosis effect of microbiome therapeutic PMC205, a strain of Bacillus subtilis. METHODS: The anti-tuberculosis activity of probiotics was evaluated in mouse models of lethal and latent pulmonary tuberculosis induced by high or low-dose infection of the extensively drug-resistant (XDR) strain. Probiotics were administered by inhalation, and the burden of M. tuberculosis in the lungs, along with mortality and clinical observations, were monitored for 12 weeks and 8 months, respectively. For an in-depth understanding, analysis of the microbiome and inflammatory profile of the lung microenvironment and induction of autophagy in vitro were explored. RESULTS: After inhalation administration of PMC205 for 3 months, the survival rate was 100%, unlike all deaths in the saline-treated group, and the burden of M. tuberculosis in the lungs was reduced by log 1.3 in the 8-month latent tuberculosis model. Moreover, PMC205 induced recovery of disrupted lung microflora, increased butyric acid, and suppressed excessive inflammation. It also promoted autophagy. CONCLUSIONS: These results confirm PMC205's anti-tuberculosis effect, suggesting that it can be developed as an adjuvant to current antibiotic therapy to solve the drug-resistant tuberculosis problem.

2.
J Cosmet Dermatol ; 23(1): 215-226, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37381171

RESUMEN

BACKGROUND: The excessive production and accumulation of melanin in the epidermal skin layer can result in skin hyperpigmentation and darkening. Current technologies for regulating melanin are based on inhibiting melanin biosynthesis. They have low effectiveness and safety issues. AIMS: This study aimed to evaluate the potential role of Pediococcus acidilactici PMC48 as a probiotic strain in medicines and cosmetics for skin treatment. MATERIALS AND METHODS: Meanwhile, our research team has reported that P. acidilactici PMC48 strain isolated from sesame leaf kimchi can directly decompose the already synthesized melanin. It can also inhibit melanin biosynthesis. In the present study, we investigated the skin-whitening effect of this strain by arranging an 8-week clinical trial with 22 participants. PMC48 was applied to each participant's artificially UV-induced tanned skin in the clinical trial. Its whitening effect was investigated based on visual evaluation, skin brightness, and melanin index. RESULTS: PMC48 showed a significant effect on the artificially induced pigmented skin. The color intensity of the tanned skin was decreased by 47.647%, and skin brightness was increased by 8.098% after the treatment period. PMC48 also significantly decreased the melanin index by 11.818%, indicating its tyrosinase inhibition capacity. Also, PMC48 improved skin moisture content level by 20.943%. Additionally, 16S rRNA-based amplicon sequencing analysis showed a distinct increase in Lactobacillaceae in the skin by up to 11.2% at the family level without affecting other skin microbiota. Furthermore, it showed no toxicity in in vitro or in vivo analyses. DISCUSSION: These results indicate that P. acidilactici PMC48 is a promising probiotic strain that can be used to develop medicines and cosmetic products to solve skin-related problems. CONCLUSIONS: These results demonstrate that P. acidilactici PMC48 can be a potential probiotic for the cosmetic industry against different skin disorders.


Asunto(s)
Cosméticos , Hiperpigmentación , Pediococcus acidilactici , Humanos , Pediococcus acidilactici/genética , Melaninas , ARN Ribosómico 16S , Piel , Hiperpigmentación/tratamiento farmacológico , Cosméticos/farmacología
3.
Antibiotics (Basel) ; 11(10)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36290007

RESUMEN

Tuberculosis, an infectious disease, is one of the leading causes of death worldwide. Drug-resistant tuberculosis exacerbates its threat. Despite long-term and costly treatment with second-line drugs, treatment failure rates and mortality remain high. Therefore, new strategies for developing new drugs and improving the efficiency of existing drug treatments are urgently needed. Our research team reported that PPs, a new class of potential anti-tuberculosis drug candidates, can inhibit the growth of drug-resistant Mycobacterium tuberculosis. Here, we report a synergistic effect of PPs with ethionamide (ETH), one of the second-line drugs, as a result of further research on PPs. While investigating gene expression changes based on microarray and 2DE (two-dimensional gel electrophoresis), it was found that PPs induced the greatest overexpression of Rv0560c in M. tuberculosis. Based on this result, a protein microarray using Rv0560c protein was performed, and it was confirmed that Rv0560c had the highest interaction with EthR, a repressor for EthA involved in activating ETH. Accordingly, a synergistic experiment was conducted under the hypothesis of increased susceptibility of ETH to M. tuberculosis by PPs. As a result, in the presence of 0.5× MIC PPs, ETH showed a growth inhibitory effect on drug-sensitive and -resistant M. tuberculosis even at a much lower concentration of about 10-fold than the original MIC of ETH. It is also suggested that the effect was due to the interaction between PPs and Rv2887, the repressor of Rv0560c. This effect was also confirmed in a mouse model of pulmonary tuberculosis, confirming the potential of PPs as a booster to enhance the susceptibility of M. tuberculosis to ETH in treating drug-resistant tuberculosis. However, more in-depth mechanistic studies and extensive animal and clinical trials are needed in the future.

4.
PLoS Biol ; 20(5): e3001648, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35639773

RESUMEN

The continued spread of drug-resistant tuberculosis is one of the most pressing and complex challenges facing tuberculosis management worldwide. Therefore, developing a new class of drugs is necessary and urgently needed to cope with the increasing threat of drug-resistant tuberculosis. This study aims to discover a potential new class of tuberculosis drug candidates different from existing tuberculosis drugs. By screening a library of compounds, methyl (S)-1-((3-alkoxy-6,7-dimethoxyphenanthren-9-yl)methyl)-5-oxopyrrolidine-2-carboxylate (PP) derivatives with antitubercular activity were discovered. MIC ranges for PP1S, PP2S, and PP3S against clinically isolated drug-resistant Mycobacterium tuberculosis strains were 0.78 to 3.13, 0.19 to 1.56, and 0.78 to 6.25 µg/ml, respectively. PPs demonstrated antitubercular activities in macrophage and tuberculosis mouse models, showing no detectable toxicity in all assays tested. PPs specifically inhibited M. tuberculosis without significantly changing the intestinal microbiome in mice. Mutants selected in vitro suggest that the drug targets the PE-PGRS57, which has been found only in the genomes of the M. tuberculosis complex, highlighting the specificity and safety potency of this compound. As PPs show an excellent safety profile and highly selective toxicity specific to M. tuberculosis, PPs are considered a promising new candidate for the treatment of drug-resistant tuberculosis while maintaining microbiome homeostasis.


Asunto(s)
Antiinfecciosos , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Animales , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Ratones , Tuberculosis/tratamiento farmacológico
5.
J Microbiol ; 59(11): 1019-1030, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34724180

RESUMEN

Tuberculosis, an infectious disease, is caused by Mycobacterium tuberculosis. It remains a significant public health issue around the globe, causing about 1.8 million deaths every year. Drug-resistant M. tuberculosis, including multi-drug-resistant (MDR), extremely-drug-resistant (XDR), and totally drug-resistant (TDR) M. tuberculosis, continues to be a threat to public health. In the case of antibiotic-resistant tuberculosis, the treatment effect of conventional antibiotics is low. Side effects caused by high doses over a long period are causing severe problems. To overcome these problems, there is an urgent need to develop a new anti-tuberculosis drug that is different from the existing compound-based antibiotics. Probiotics are defined as live microorganisms conferring health benefits. They can be potential therapeutic agents in this context as the effectiveness of probiotics against different infectious diseases has been well established. Here, we report that Lactobacillus crispatus PMC201 shows a promising effect on tuberculosis isolated from vaginal fluids of healthy Korean women. Lactobacillus crispatus PMC201 reduced M. tuberculosis H37Rv under co-culture conditions in broth and reduced M. tuberculosis H37Rv and XDR M. tuberculosis in macrophages. Lactobacillus crispatus PMC201 was not toxic to a guinea pig model and did not induce dysbiosis in a human intestinal microbial ecosystem simulator. Taken together, these results indicate that L. crispatus PMC201 can be a promising alternative drug candidate in the current tuberculosis drug regime. Further study is warranted to assess the in vivo efficacy and confirm the mode of action of L. crispatus PMC201.


Asunto(s)
Lactobacillus crispatus/fisiología , Mycobacterium tuberculosis/fisiología , Probióticos/administración & dosificación , Tuberculosis/tratamiento farmacológico , Vagina/microbiología , Adolescente , Adulto , Animales , Antibiosis , Femenino , Cobayas , Humanos , Intestinos/microbiología , Lactobacillus crispatus/clasificación , Lactobacillus crispatus/genética , Lactobacillus crispatus/aislamiento & purificación , Masculino , Microbiota , Persona de Mediana Edad , Mycobacterium tuberculosis/efectos de los fármacos , Filogenia , Probióticos/aislamiento & purificación , Tuberculosis/microbiología , Adulto Joven
6.
J Microbiol Biotechnol ; 31(12): 1632-1642, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584040

RESUMEN

Tuberculosis is a highly contagious disease caused by Mycobacterium tuberculosis. It affects about 10 million people each year and is still one of the leading causes of death worldwide. About 2 to 3 billion people (equivalent to 1 in 3 people in the world) are infected with latent tuberculosis. Moreover, as the number of multidrug-resistant, extensively drug-resistant, and totally drug-resistant strains of M. tuberculosis continues to increase, there is an urgent need to develop new anti-tuberculosis drugs that are different from existing drugs to combat antibiotic-resistant M. tuberculosis. Against this background, we aimed to develop new anti-tuberculosis drugs using probiotics. Here, we report the anti-tuberculosis effect of Pediococcus acidilactici PMC202 isolated from young radish kimchi, a traditional Korean fermented food. Under coculture conditions, PMC202 inhibited the growth of M. tuberculosis. In addition, PMC202 inhibited the growth of drug-sensitive and -resistant M. tuberculosis- infected macrophages at a concentration that did not show cytotoxicity and showed a synergistic effect with isoniazid. In a 2-week, repeated oral administration toxicity study using mice, PMC202 did not cause weight change or specific clinical symptoms. Furthermore, the results of 16S rRNA-based metagenomics analysis confirmed that dysbiosis was not induced in bronchoalveolar lavage fluid after oral administration of PMC202. The anti-tuberculosis effect of PMC202 was found to be related to the reduction of nitric oxide. Our findings indicate that PMC202 could be used as an anti-tuberculosis drug candidate with the potential to replace current chemicalbased drugs. However, more extensive toxicity, mechanism of action, and animal efficacy studies with clinical trials are needed.


Asunto(s)
Alimentos Fermentados/microbiología , Mycobacterium tuberculosis/efectos de los fármacos , Pediococcus acidilactici/fisiología , Raphanus/microbiología , Animales , Antituberculosos/administración & dosificación , Antituberculosos/farmacología , Medios de Cultivo Condicionados/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Microbiota , Mycobacterium tuberculosis/crecimiento & desarrollo , Óxido Nítrico/metabolismo , Pediococcus acidilactici/aislamiento & purificación , Probióticos/administración & dosificación , Probióticos/farmacología , Células RAW 264.7 , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA