Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Exp Cell Res ; 365(1): 106-118, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499205

RESUMEN

Researchers have been using lab-on-a-chip systems to isolate factors for study, simulate laboratory analysis and model cellular, tissue and organ level processes. The technology is increasing rapidly, but the bone field has been slow to keep pace. Novel models are needed that have the power and flexibility to investigate the elegant and synchronous multicellular interactions that occur in normal bone turnover and in disease states in which remodeling is implicated. By removing temporal and spatial limitations and enabling quantification of functional outcomes, the platforms should provide unique environments that are more biomimetic than single cell type systems while minimizing complex systemic effects of in vivo models. This manuscript details the development and characterization of lab-on-a-chip platforms for stimulating osteocytes and quantifying bone remodeling. Our platforms provide the foundation for a model that can be used to investigate remodeling interactions as a whole or as a standard mechanotransduction tool by which isolated activity can be quantified as a function of load.


Asunto(s)
Remodelación Ósea/fisiología , Mecanotransducción Celular/fisiología , Animales , Biomimética/métodos , Línea Celular , Dispositivos Laboratorio en un Chip , Ratones , Microfluídica/métodos , Osteocitos/fisiología , Células RAW 264.7
2.
Med Eng Phys ; 38(4): 411-6, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26904918

RESUMEN

The field of mechanobiology aims to understand the role the mechanical environment plays in directing cell and tissue development, function and disease. The empirical aspect of the field requires the development of accurate, reproducible and reliable loading platforms that can apply microprecision mechanical load. In this study we designed, fabricated and characterized a pure uniaxial loading platform capable of testing small synthetic and organic specimens along a horizontal axis. The major motivation for platform development was in stimulating bone cells seeded on elastomeric substrates and soft tissue loading. The biological uses required the development of culturing fixtures and environmental chamber. The device utilizes commercial microactuators, load cells and a rail/carriage block system. Following fabrication, acceptable performance was verified by suture tensile testing.


Asunto(s)
Ensayo de Materiales/instrumentación , Fenómenos Mecánicos , Biología , Diseño de Equipo , Soporte de Peso
3.
Artículo en Inglés | MEDLINE | ID: mdl-30245613

RESUMEN

In the body, osteocytes reside in lacunae, lenticular shaped cavities within mineralized bone. These cells are linked to each other and surface-residing osteoblasts via physical channels known as gap junctions. It has been suggested that osteocytes sense mechanical load applied to bone and relay that signal to osteoclasts and osteoblasts. Current in vitro and in vivo models of mechanotransduction face temporal and spatial barriers. Recent advances in polydimethylsiloxane (PDMS) based microfabrication techniques may be able to overcome some of these hurdles. However, before the bone research field can effectively utilize microsystems techniques, fundamental groundwork must be completed. This study characterized the behaviour of osteocytes on PDMS coated with collagen type I (CTI) and provides the framework for bone cell mechanotransduction studies using microsystems. The goal was to determine whether osteocytes were adversely affected by the substrate material by comparing their behaviour to a standard glass substrate. In addition, optimal culture conditions and time points for growing osteocytes on PDMS substrates were determined. Results of this study suggested that use of PDMS does not adversely affect osteocyte behaviour. Furthermore, the results demonstrated that osteocytes should be cultured for no less than 72 hours prior to experimentation to allow the establishment and maintenance of phenotypic characteristics. These results completed essential groundwork necessary for further studies regarding osteocytes in microsystems modelling utilizing PDMS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA