Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
One Health Outlook ; 6(1): 18, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39350294

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS), a tick-borne disease caused by Dabie bandavirus (SFTSV) is an emerging infectious disease of substantial concern in East Asia. In 2019, Ongkittikul S et al. reported the first case of SFTS in Thailand. Our report describes a One Health investigation of SFTS zoonosis examining the index case and suspected animal reservoirs using real-time RT-PCR and immunoassays. We add to the report on the first confirmed case of SFTSV infection in a human in Thailand by conducting a limited but informative One Health surveillance study. Dogs and cats tested positive for SFTSV antibody using IgG ELISA. We conclude that domestic dogs and cats might serve as potential reservoirs for SFTSV spread due to their closer proximity to the index case than other non-domestic animals. Notably, we did not detect SFTSV in synanthropic cats or dogs-nor did we detect SFTSV in Rhipicephalus sanguineus ticks-using RT-PCR. We propose that One Health investigations coupling genomic and serologic assays in response to new SFTS cases could play a pivotal role in preventing and managing SFTS among humans and animals in East Asia. As such, we are establishing a collaborative response to SFTS in Thailand through human outbreak investigations that align with principles of One Health, through environmental surveys and animal RT-PCR and immunoassays. Our investigation highlights the importance of coupling RT-PCR with seroprevalence assays as principal elements of One Health surveillance for SFTS in order to shed light on potential animal reservoirs and track emerging zoonosis.

2.
PLoS Pathog ; 20(7): e1012348, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39008518

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS) virus, a tick-borne bunyavirus, causes a severe/fatal disease termed SFTS; however, the viral virulence is not fully understood. The viral non-structural protein, NSs, is the sole known virulence factor. NSs disturbs host innate immune responses and an NSs-mutant SFTS virus causes no disease in an SFTS animal model. The present study reports a novel determinant of viral tropism as well as virulence in animal models, within the glycoprotein (GP) of SFTS virus and an SFTS-related tick-borne bunyavirus. Infection with mutant SFTS viruses lacking the N-linked glycosylation of GP resulted in negligible usage of calcium-dependent lectins in cells, less efficient infection, high susceptibility to a neutralizing antibody, low cytokine production in macrophage-like cells, and reduced virulence in Ifnar-/- mice, when compared with wildtype virus. Three SFTS virus-related bunyaviruses had N-glycosylation motifs at similar positions within their GP and a glycan-deficient mutant of Heartland virus showed in vitro and in vivo phenotypes like those of the SFTS virus. Thus, N-linked glycosylation of viral GP is a novel determinant for the tropism and virulence of SFTS virus and of a related virus. These findings will help us understand the process of severe/fatal diseases caused by tick-borne bunyaviruses.


Asunto(s)
Glicoproteínas , Phlebovirus , Tropismo Viral , Animales , Glicosilación , Ratones , Virulencia , Phlebovirus/patogenicidad , Phlebovirus/genética , Glicoproteínas/metabolismo , Glicoproteínas/genética , Humanos , Síndrome de Trombocitopenia Febril Grave/virología , Ratones Endogámicos C57BL , Infecciones por Bunyaviridae/virología , Infecciones por Bunyaviridae/metabolismo , Garrapatas/virología , Ratones Noqueados , Orthobunyavirus/patogenicidad , Orthobunyavirus/genética , Orthobunyavirus/metabolismo
3.
Front Microbiol ; 15: 1367672, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550855

RESUMEN

Introduction: Severe dengue is thought to be caused by an excessive host immune response. Methods: To study the pathogenesis of severe dengue, we developed a novel model using LysM Cre+Ifnarflox/flox mice carrying depleted Ifnar expression only in subsets of murine myeloid cells. Results: Although dengue virus (DENV) clinical isolates were not virulent in LysM Cre+Ifnarflox/flox mice, mouse-adapted DV1-5P7Sp and DV3P12/08P4Bm, which were obtained by passaging the spleen or bone marrow of mice, demonstrated 100% lethality with severe vascular leakage in the liver and small intestine. DV1-5P7Sp and DV3P12/08P4Bm harbored five and seven amino acid substitutions, respectively. Infection also induced neutrophil infiltration in the small intestine, and increased expression of IL-6 and MMP-8 and blockade of TNF-α signaling protected the mice, as demonstrated in a previous severe dengue mouse model using C57/BL6 mice lacking both IFN-α/ß and IFN-γ receptors. Notably, the new models with DV1-5P7Sp and DV3P12/08P4Bm showed an increased proliferative capacity of the adapted viruses in the thymus and bone marrow. Discussion: These observations suggest that myeloid cell infection is sufficient to trigger cytokine storm-induced vascular leakage. This model can refine the factors involved in the pathology of severe dengue leading to vascular leakage.

4.
Microbiol Spectr ; 12(1): e0309123, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38095468

RESUMEN

IMPORTANCE: Zoonotic infection of humans with herpes B virus (BV) causes severe neurological diseases. Acyclovir (ACV) and ganciclovir (GCV), most frequently used as anti-herpes drugs, are recommended for prophylaxis and therapy in human BV infection. In this study, we examined the property of BV thymidine kinase (TK) against anti-herpes drugs using a recombinant herpes simplex virus type 1 (HSV-1) carrying BV TK gene. We found that HSV-1 carrying BV TK was similarly sensitive to GCV as HSV-1 carrying varicella zoster virus TK. In addition, we demonstrated that BV TK was not mutated in the GCV- and ACV-resistant HSV-1 carrying BV TK, suggesting that ACV- or GCV-resistant BV might be rare during treatment with these antiviral drugs. These data can provide a new insight into the properties of BV TK in terms of the development of drug resistance.


Asunto(s)
Herpes Simple , Herpesvirus Cercopitecino 1 , Herpesvirus Humano 1 , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Herpesvirus Humano 1/genética , Timidina Quinasa/genética , Timidina Quinasa/uso terapéutico , Aciclovir/farmacología , Aciclovir/uso terapéutico , Ganciclovir/farmacología , Herpes Simple/tratamiento farmacológico
5.
J Infect Chemother ; 30(6): 488-493, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38042298

RESUMEN

INTRODUCTION: Tecovirimat's application in treating mpox remains under-researched, leaving gaps in clinical and virological understanding. METHODS: The Tecopox study in Japan evaluated the efficacy and safety of tecovirimat in patients with smallpox or mpox, who were divided into oral tecovirimat and control groups. Patients with mpox enrolled between June 28, 2022, and April 30, 2023, were included. Demographic and clinical details along with blood, urine, pharyngeal swab, and skin lesion samples were gathered for viral analysis. A multivariable Tobit regression model was employed to identify factors influencing prolonged viral detection. RESULTS: Nineteen patients were allocated to the tecovirimat group, and no patients were allocated to the control group. The median age was 38.5 years, and all patients were males. Ten patients (52.6%) were infected with human immunodeficiency virus (HIV). Sixteen patients (84.2%) had severe disease. Nine of the 15 patients (60.0%) (four patients withdrew before day 14) had negative PCR results for skin lesion specimens 14 days after inclusion. The mortality rates were 0% on days 14 and 30. No severe adverse events were reported. HIV status and the number of days from symptom onset to tecovirimat administration were associated with lower Ct values (p = 0.027 and p < 0.001, respectively). The median number of days when PCR testing did not detect the mpox virus in each patient was 19.5 days. CONCLUSION: Early tecovirimat administration might reduce viral shedding duration, thereby mitigating infection spread. Moreover, patients infected with HIV showed prolonged viral shedding, increasing the transmission risk compared to those without HIV.

6.
Virus Res ; 340: 199301, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38096954

RESUMEN

Heartland virus (HRTV) causes generalized symptoms, severe shock, and multiple organ failure. We previously reported that interferon-α/ß receptor knockout (IFNAR-/-) mice infected intraperitoneally with 1 × 107 tissue culture-infective dose (TCID50) of HRTV died, while those subcutaneously infected with the same dose of HRTV did not. The pathophysiology of IFNAR-/- mice infected with HRTV and the mechanism underlying the difference in disease severity, which depends on HRTV infection route, were analyzed in this study. The liver, spleen, mesenteric and axillary lymph nodes, and gastrointestinal tract of intraperitoneally (I.P.) infected mice had pathological changes; however, subcutaneously (S.C.) infected mice only had pathological changes in the axillary lymph node and gastrointestinal tract. HRTV RNA levels in the mesenteric lymph node, lung, liver, spleen, kidney, stomach, intestine, and blood were significantly higher in I.P. infected mice than those in S.C. infected mice. Chemokine ligand-1 (CXCL-1), tumor necrosis factor (TNF)-α, interleukin (IL)-12, interferon (IFN)-γ, and IL-10 levels in plasma of I.P. infected mice were higher than those of S.C. infected mice. These results indicated that high levels of viral RNA and the induction of inflammatory responses in HRTV-infected IFNAR-/- mice may be associated with disease severity.


Asunto(s)
Bunyaviridae , Interferón Tipo I , Receptor de Interferón alfa y beta , Animales , Ratones , Receptor de Interferón alfa y beta/genética , Ratones Noqueados , Interferones , Hígado , Interleucina-12
7.
PLoS Negl Trop Dis ; 17(12): e0011851, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38100536

RESUMEN

Nipah virus (NiV) is a highly pathogenic zoonotic virus that causes severe encephalitis and respiratory diseases and has a high mortality rate in humans (>40%). Epidemiological studies on various fruit bat species, which are natural reservoirs of the virus, have shown that NiV is widely distributed throughout Southeast Asia. Therefore, there is an urgent need to develop effective NiV vaccines. In this study, we generated recombinant vaccinia viruses expressing the NiV glycoprotein (G) or fusion (F) protein using the LC16m8 strain, and examined their antigenicity and ability to induce immunity. Neutralizing antibodies against NiV were successfully induced in hamsters inoculated with LC16m8 expressing NiV G or F, and the antibody titers were higher than those induced by other vaccinia virus vectors previously reported to prevent lethal NiV infection. These findings indicate that the LC16m8-based vaccine format has superior features as a proliferative vaccine compared with other poxvirus-based vaccines. Moreover, the data collected over the course of antibody elevation during three rounds of vaccination in hamsters provide an important basis for the clinical use of vaccinia virus-based vaccines against NiV disease. Trial Registration: NCT05398796.


Asunto(s)
Infecciones por Henipavirus , Virus Nipah , Vacunas Virales , Animales , Cricetinae , Humanos , Virus Vaccinia/genética , Virus Nipah/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Vacunas Virales/genética , Vacunas Sintéticas/genética , Infecciones por Henipavirus/prevención & control
8.
PLoS Negl Trop Dis ; 17(11): e0011743, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37939119

RESUMEN

Dengue is a major health problem in tropical and subtropical regions. Some patients develop a severe form of dengue, called dengue hemorrhagic fever, which can be fatal. Severe dengue is associated with a transient increase in vascular permeability. A cytokine storm is thought to be the cause of the vascular leakage. Although there are various research reports on the pathogenic mechanism, the complete pathological process remains poorly understood. We previously reported that dengue virus (DENV) type 3 P12/08 strain caused a lethal systemic infection and severe vascular leakage in interferon (IFN)-α/ß and γ receptor knockout mice (IFN-α/ß/γRKO mice), and that blockade of TNF-α signaling protected mice. Here, we performed transcriptome analysis of liver and small intestine samples collected chronologically from P12/08-infected IFN-α/ß/γRKO mice in the presence/absence of blockade of TNF-α signaling and evaluated the cytokine and effector-level events. Blockade of TNF-α signaling mainly protected the small intestine but not the liver. Infection induced the selective expansion of IL-17A-producing Vγ4 and Vγ6 T cell receptor (TCR) γδ T cells in the small intestine, and IL-17A, together with TNF-α, played a critical role in the transition to severe disease via the induction of inflammatory cytokines such as TNF-α, IL-1ß, and particularly the excess production of IL-6. Infection also induced the infiltration of neutrophils, as well as neutrophil collagenase/matrix metalloprotease 8 production. Blockade of IL-17A signaling reduced mortality and suppressed the expression of most of these cytokines, including TNF-α, indicating that IL-17A and TNF-α synergistically enhance cytokine expression. Blockade of IL-17A prevented nuclear translocation of NF-κB p65 in stroma-like cells and epithelial cells in the small intestine but only partially prevented recruitment of immune cells to the small intestine. This study provides an overall picture of the pathogenesis of infection in individual mice at the cytokine and effector levels.


Asunto(s)
Dengue , Virosis , Humanos , Ratones , Animales , Interleucina-17/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Síndrome de Liberación de Citoquinas , Citocinas/metabolismo , Ratones Noqueados , Linfocitos T/metabolismo , Intestino Delgado , Virosis/patología
9.
BMJ Open ; 13(8): e069550, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527886

RESUMEN

INTRODUCTION: Monkeypox was originally endemic locally in West Africa; however, outbreaks in non-endemic countries have been recognised since May 2022. The effectiveness of tecovirimat has been estimated against smallpox, which belongs to the same Orthopoxvirus genus as monkeypox. Thus, tecovirimat is expected to be effective against monkeypox. This study aims to evaluate the efficacy and safety of oral tecovirimat therapy for patients with smallpox and monkeypox and to prepare a scheme for oral tecovirimat use in Japan. METHODS AND ANALYSIS: This nationwide, multicentre, non-randomised, open-label, double-arm study will involve viral examination of the blood, throat swabs, urine and skin lesions, performed periodically. Participants will freely decide whether to participate in an administered group (supportive treatment plus oral tecovirimat) or a non-administered group (only supportive treatment). Tecovirimat will be administered for 14 days. To ensure that financial problems do not preclude participation in the study, the research fund will cover the cost of tecovirimat and basic hospitalisation fees. The primary endpoint is the percentage of patients with negative PCR results (cycle threshold value ≥40) for skin lesion specimens at 14 days after inclusion in the study. Secondary endpoints include mortality at 14 and 30 days, viral load in each sample, duration of fever and adverse events. The sample size is estimated to be 50 patients with monkeypox or smallpox. ETHICS AND DISSEMINATION: Written informed consent will be obtained from all participants. This study was approved by the Certified Review Board of National Center for Global Health and Medicine and published in the Japan Registry of Clinical Trials. The results of this study will be published in peer-reviewed journals and/or in presentations at academic conferences. TRIAL REGISTRATION NUMBER: jRCTs031220169.


Asunto(s)
COVID-19 , Mpox , Viruela , Humanos , Mpox/tratamiento farmacológico , Viruela/tratamiento farmacológico , SARS-CoV-2 , Antivirales/efectos adversos , Benzamidas/efectos adversos , Estudios Multicéntricos como Asunto
10.
Heliyon ; 9(8): e18983, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37600421

RESUMEN

Manipulating viral genomes is an essential technique in reverse genetics and recombinant vaccine development. A strategy for manipulating large viral genomes involves introducing their entire genome into bacterial artificial chromosomes and employing Escherichia coli genetic tools. For sequence manipulation on bacterial artificial chromosomes (bacterial artificial chromosomes recombineering), a well-established method that relies on the Escherichia coli strain GS1783, and the template plasmid, pEPKan-S, is often used. This method, known as markerless DNA manipulation, allows for the generation of a recombinant bacterial artificial chromosome that does not retain the selection markers used during recombination. Although this method is highly innovative, there remains room for improvement as the plasmid is currently only available for positive selection. Additionally, differentiating true recombinants from false negatives often proves time-consuming. Consequently, an improved method for bacterial artificial chromosomes recombineering, which utilizes fluorescent proteins, has been developed. This method's core comprises three plasmids containing the I-SceI recognition site, antibiotic resistance genes (ampicillin, kanamycin, and zeocin), and fluorescent genes (YPet, mOrange, and mScarlet). The success or failure of Red recombination can be confirmed via fluorescent signals. To validate this method, the Lassa virus genes were introduced into the bacterial artificial chromosomes, containing the entire genome of the vaccinia virus strain LC16m8. Consequently, the expression of fluorescent protein genes contributed to positive selection, such as blue-white screening and counter-selection during the first and second Red recombination.

11.
Microbiol Spectr ; 11(4): e0056623, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37409948

RESUMEN

Mpox virus (formerly monkeypox virus [MPXV]) is a neglected zoonotic pathogen that caused a worldwide outbreak in May 2022. Given the lack of an established therapy, the development of an anti-MPXV strategy is of vital importance. To identify drug targets for the development of anti-MPXV agents, we screened a chemical library using an MPXV infection cell assay and found that gemcitabine, trifluridine, and mycophenolic acid (MPA) inhibited MPXV propagation. These compounds showed broad-spectrum anti-orthopoxvirus activities and presented lower 90% inhibitory concentrations (0.026 to 0.89 µM) than brincidofovir, an approved anti-smallpox agent. These three compounds have been suggested to target the postentry step to reduce the intracellular production of virions. Knockdown of IMP dehydrogenase (IMPDH), the rate-limiting enzyme of guanosine biosynthesis and a target of MPA, dramatically reduced MPXV DNA production. Moreover, supplementation with guanosine recovered the anti-MPXV effect of MPA, suggesting that IMPDH and its guanosine biosynthetic pathway regulate MPXV replication. By targeting IMPDH, we identified a series of compounds with stronger anti-MPXV activity than MPA. This evidence shows that IMPDH is a potential target for the development of anti-MPXV agents. IMPORTANCE Mpox is a zoonotic disease caused by infection with the mpox virus, and a worldwide outbreak occurred in May 2022. The smallpox vaccine has recently been approved for clinical use against mpox in the United States. Although brincidofovir and tecovirimat are drugs approved for the treatment of smallpox by the U.S. Food and Drug Administration, their efficacy against mpox has not been established. Moreover, these drugs may present negative side effects. Therefore, new anti-mpox virus agents are needed. This study revealed that gemcitabine, trifluridine, and mycophenolic acid inhibited mpox virus propagation and exhibited broad-spectrum anti-orthopoxvirus activities. We also suggested IMP dehydrogenase as a potential target for the development of anti-mpox virus agents. By targeting this molecule, we identified a series of compounds with stronger anti-mpox virus activity than mycophenolic acid.


Asunto(s)
Monkeypox virus , Ácido Micofenólico , Guanosina/farmacología , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/metabolismo , Ácido Micofenólico/farmacología , Trifluridina , Monkeypox virus/efectos de los fármacos
12.
Front Microbiol ; 14: 1137086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910229

RESUMEN

RNA viruses are the etiological agents of many infectious diseases. Since RNA viruses are error-prone during genome replication, rapid, accurate and economical whole RNA viral genome sequence determination is highly demanded. Next-generation sequencing (NGS) techniques perform whole viral genome sequencing due to their high-throughput sequencing capacity. However, the NGS techniques involve a significant burden for sample preparation. Since to generate complete viral genome coverage, genomic nucleic acid enrichment is required by reverse transcription PCR using virus-specific primers or by viral particle concentration. Furthermore, conventional NGS techniques cannot determine the 5' and 3' terminal sequences of the RNA viral genome. Therefore, the terminal sequences are determined one by one using rapid amplification of cDNA ends (RACE). However, since some RNA viruses have segmented genomes, the burden of the determination using RACE is proportional to the number of segments. To date, there is only one study attempting whole genome sequencing of multiple RNA viruses without using above mentioned methods, but the generated sequences' accuracy compared to the reference sequences was up to 97% and did not reach 100% due to the low read depth. Hence, we established novel methods, named PCR-NGS and RCA-NGS, that were optimized for an NGS machine, MinION. These methods do not require nucleic acid amplification with virus-specific PCR primers, physical viral particle enrichment, and RACE. These methods enable whole RNA viral genome sequencing by combining the following techniques: (1) removal of unwanted DNA and RNA other than the RNA viral genome by nuclease treatment; (2) the terminal of viral genome sequence determination by barcoded linkers ligation; (3) amplification of the viral genomic cDNA using ligated linker sequences-specific PCR or an isothermal DNA amplification technique, such as rolling circle amplification (RCA). The established method was evaluated using isolated RNA viruses with single-stranded, double-stranded, positive-stranded, negative-stranded, non-segmented or multi-segmented genomes. As a result, all the viral genome sequences could be determined with 100% accuracy, and these mean read depths were greater than 2,500×, at least using either of the methods. This method should allow for easy and economical determination of accurate RNA viral genomes.

13.
J Infect Dis ; 228(5): 591-603, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36892247

RESUMEN

BACKGROUND: Mpox virus (MPXV) is a zoonotic orthopoxvirus and caused an outbreak in 2022. Although tecovirimat and brincidofovir are approved as anti-smallpox drugs, their effects in mpox patients have not been well documented. In this study, by a drug repurposing approach, we identified potential drug candidates for treating mpox and predicted their clinical impacts by mathematical modeling. METHODS: We screened 132 approved drugs using an MPXV infection cell system. We quantified antiviral activities of potential drug candidates by measuring intracellular viral DNA and analyzed the modes of action by time-of-addition assay and electron microscopic analysis. We further predicted the efficacy of drugs under clinical concentrations by mathematical simulation and examined combination treatment. RESULTS: Atovaquone, mefloquine, and molnupiravir exhibited anti-MPXV activity, with 50% inhibitory concentrations of 0.51-5.2 µM, which was more potent than cidofovir. Whereas mefloquine was suggested to inhibit viral entry, atovaquone and molnupiravir targeted postentry processes. Atovaquone was suggested to exert its activity through inhibiting dihydroorotate dehydrogenase. Combining atovaquone with tecovirimat enhanced the anti-MPXV effect of tecovirimat. Quantitative mathematical simulations predicted that atovaquone can promote viral clearance in patients by 7 days at clinically relevant drug concentrations. CONCLUSIONS: These data suggest that atovaquone would be a potential candidate for treating mpox.


Asunto(s)
Mefloquina , Monkeypox virus , Humanos , Atovacuona/farmacología , Atovacuona/uso terapéutico , Mefloquina/farmacología , Mefloquina/uso terapéutico , Monkeypox virus/efectos de los fármacos
14.
Front Microbiol ; 14: 1333946, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38249467

RESUMEN

Introduction: Severe fever with thrombocytopenia syndrome (SFTS) is a fatal viral disease characterized by high fever, thrombocytopenia, leukopenia, and multi-organ haemorrhage. Disruption of the humoral immune response and decreased lymphocyte numbers are thought to contribute to the disease severity. These findings have been obtained through the analysis of peripheral blood leukocytes in human patients, whereas analysis of lymph nodes has been limited. Thus, in this study, we characterized the germinal centre response and apoptosis in the lymph nodes of cats with fatal SFTS, because SFTS in cats well mimics the pathology of human SFTS. Methods: Lymph node tissue sections collected during necropsy from seven fatal SFTS patients and five non-SFTS cases were used for histopathological analysis. Additionally, lymph node tissue sections collected from cats with experimental infection of SFTS virus (SFTSV) were also analysed. Results: In the lymphoid follicles of cats with SFTS, a drastic decrease in Bcl6- and Ki67-positive germinal centre B cells was observed. Together, the number of T cells in the follicles was also decreased in SFTS cases. In the paracortex, a marked increase in cleaved-caspase3 positivity was observed in T cells. These changes were independent of the number of local SFTS virus-positive cell. Furthermore, the analysis of cats with experimental SFTSV infection revealed that the intrafollicular Bcl6- and CD3-positive cell numbers in cats with low anti-SFTSV antibody production were significantly lower than those in cats with high anti-SFTSV antibody production. Discussion: These results suggest that dysfunction of the humoral response in severe SFTS was caused by the loss of germinal centre formation and massive apoptosis of T cells in the lymph nodes due to systemically circulating viruses.

15.
Viruses ; 14(8)2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-36016286

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS) is an infectious disease with a high case fatality rate caused by the SFTS virus, and currently there are no approved specific treatments. Neutralizing monoclonal antibodies (mAbs) against the virus could be a therapeutic agent in SFTS treatment, but their development has not sufficiently been carried out. In the present study, mouse and human mAbs exposed to the viral envelope proteins Gn and Gc (16 clones each) were characterized in vitro and in vivo by using recombinant proteins, cell culture with viruses, and an SFTS animal model with IFNAR-/- mice. Neutralization activities against the recombinant vesicular stomatitis virus bearing SFTS virus Gn/Gc as envelope proteins were observed with three anti-Gn and six anti-Gc mAbs. Therapeutic activities were observed among anti-Gn, but not anti-Gc mAbs with neutralizing activities. These results propose an effective strategy to obtain promising therapeutic mAb candidates for SFTS treatment, and a necessity to reveal precise roles of the SFTS virus Gn/Gc proteins.


Asunto(s)
Phlebovirus , Síndrome de Trombocitopenia Febril Grave , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Ratones , Proteínas del Envoltorio Viral/metabolismo
16.
Viruses ; 14(8)2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-36016290

RESUMEN

Heartland bandavirus (HRTV) is an emerging tick-borne virus that is distributed in the United States and that causes febrile illness with thrombocytopenia and leukocytopenia. It is genetically close to Dabie bandavirus, which is well known as severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV). The mortality rate of human HRTV infection is approximately 10%; however, neither approved anti-HRTV agents nor vaccines exist. An appropriate animal model should be developed to evaluate the efficacy of antiviral agents and vaccines against HRTV. The susceptibility of IFNAR-/- mice with HRTV infection was evaluated using subcutaneous, intraperitoneal, and retro-orbital inoculation routes. IFNAR-/- mice intraperitoneally infected with HRTV showed the most severe clinical signs, and the 50% lethal dose was 3.2 × 106 TCID50. Furthermore, to evaluate the utility of a novel lethal IFNAR-/- mice model, IFNAR-/- mice were orally administered favipiravir, ribavirin, or a solvent for 5 days immediately after a lethal dose of HRTV inoculation. The survival rates of the favipiravir-, ribavirin-, and solvent-administered mice were 100, 33, and 0%, respectively. The changes in bodyweights and HRTV RNA loads in the blood of favipiravir-treated IFNAR-/- mice were the lowest among the three groups, which suggests that favipiravir is a promising drug candidate for the treatment of patients with HRTV infection.


Asunto(s)
Phlebovirus , Trombocitopenia , Amidas , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Pirazinas , Receptor de Interferón alfa y beta/genética , Ribavirina/uso terapéutico , Solventes
17.
J Virol ; 96(17): e0108322, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35993739

RESUMEN

Ebola virus (EBOV) VP30 regulates viral genome transcription and replication by switching its phosphorylation status. However, the importance of VP30 phosphorylation and dephosphorylation in other viral replication processes such as nucleocapsid and virion assembly is unclear. Interestingly, VP30 is predominantly dephosphorylated by cellular phosphatases in viral inclusions, while it is phosphorylated in the released virions. Thus, uncertainties regarding how VP30 phosphorylation in nucleocapsids is achieved and whether VP30 phosphorylation provides any advantages in later steps in viral replication have arisen. In the present study, to characterize the roles of VP30 phosphorylation in nucleocapsid formation, we used electron microscopic analyses and live cell imaging systems. We identified VP30 localized to the surface of protrusions surrounding nucleoprotein (NP)-forming helical structures in the nucleocapsid, suggesting the involvement in assembly and transport of nucleocapsids. Interestingly, VP30 phosphorylation facilitated its association with nucleocapsid-like structures (NCLSs). On the contrary, VP30 phosphorylation does not influence the transport characteristics and NCLS number leaving from and coming back into viral inclusions, indicating that the phosphorylation status of VP30 is not a prerequisite for NCLS departure. Moreover, the phosphorylation status of VP30 did not cause major differences in nucleocapsid transport in authentic EBOV-infected cells. In the following budding step, the association of VP30 and its phosphorylation status did not influence the budding efficiency of virus-like particles. Taken together, it is plausible that EBOV may utilize the phosphorylation of VP30 for its selective association with nucleocapsids, without affecting nucleocapsid transport and virion budding processes. IMPORTANCE Ebola virus (EBOV) causes severe fevers with unusually high case fatality rates. The nucleocapsid provides the template for viral genome transcription and replication. Thus, understanding the regulatory mechanism behind its formation is important for the development of novel therapeutic approaches. Previously, we established a live-cell imaging system based on the ectopic expression of viral fluorescent fusion proteins, allowing the visualization and characterization of intracytoplasmic transport of nucleocapsid-like structures. EBOV VP30 is an essential transcriptional factor for viral genome synthesis, and, although its role in viral genome transcription and replication is well understood, the functional importance of VP30 phosphorylation in assembly of nucleocapsids is still unclear. Our work determines the localization of VP30 at the surface of ruffled nucleocapsids, which differs from the localization of polymerase in EBOV-infected cells. This study sheds light on the novel role of VP30 phosphorylation in nucleocapsid assembly, which is an important prerequisite for virion formation.


Asunto(s)
Ebolavirus , Nucleocápside , Factores de Transcripción , Proteínas Virales , Ensamble de Virus , Transporte Biológico , Ebolavirus/química , Ebolavirus/crecimiento & desarrollo , Ebolavirus/metabolismo , Fiebre Hemorrágica Ebola/virología , Humanos , Nucleocápside/biosíntesis , Nucleocápside/metabolismo , Fosforilación , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Virión/química , Virión/crecimiento & desarrollo , Virión/metabolismo
18.
Nat Commun ; 13(1): 3176, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676290

RESUMEN

Retinoic acid-inducible gene (RIG)-I is an essential innate immune sensor that recognises pathogen RNAs and induces interferon (IFN) production. However, little is known about how host proteins regulate RIG-I activation. Here, we show that leukocyte cell-derived chemotaxin 2 (LECT2), a hepatokine and ligand of the MET receptor tyrosine kinase is an antiviral regulator that promotes the RIG-I-mediated innate immune response. Upon binding to MET, LECT2 induces the recruitment of the phosphatase PTP4A1 to MET and facilitates the dissociation and dephosphorylation of phosphorylated SHP2 from MET, thereby protecting RIG-I from SHP2/c-Cbl-mediated degradation. In vivo, LECT2 overexpression enhances RIG-I-dependent IFN production and inhibits lymphocytic choriomeningitis virus (LCMV) replication in the liver, whereas these changes are reversed in LECT2 knockout mice. Forced suppression of MET abolishes IFN production and antiviral activity in vitro and in vivo. Interestingly, hepatocyte growth factor (HGF), an original MET ligand, inhibits LECT2-mediated anti-viral signalling; conversely, LECT2-MET signalling competes with HGF-MET signalling. Our findings reveal previously unrecognized crosstalk between MET-mediated proliferation and innate immunity and suggest that targeting LECT2 may have therapeutic value in infectious diseases and cancer.


Asunto(s)
Factores de Restricción Antivirales , Péptidos y Proteínas de Señalización Intercelular , Proteínas Proto-Oncogénicas c-met , Animales , Factores de Restricción Antivirales/inmunología , Inmunidad Innata , Péptidos y Proteínas de Señalización Intercelular/inmunología , Leucocitos/metabolismo , Ligandos , Ratones , Proteínas Proto-Oncogénicas c-met/metabolismo
19.
Jpn J Infect Dis ; 75(5): 496-503, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-35491225

RESUMEN

Neutralizing antibodies (NAbs) to human cytomegalovirus (HCMV) are associated with the risk of transplacental HCMV infection of the fetus in pregnant women. The IgG-positivity rate to HCMV determined by enzyme immunoassay (EIA) or indirect immunofluorescence assay has decreased from approximately 100% to 70% over the past 30 years in Japan. We tested serum samples from 630 Japanese women aged 20-49 years whose blood samples were obtained between 1980 and 2015. IgG titer was measured using an EIA-based assay. HCMV-NAb titer was measured using a neutralization test assay with an HCMV isolate on human retinal epithelial cells. Longitudinal transitions in HCMV-NAb prevalence were clarified. The prevalence of HCMV-EIA-IgG, and HCMV-NAb at a titer of 16-fold, and HCMV-NAb at a titer of 100-fold, changed from 96.7% to 78.9%, 93.3% to 85.6%, and 35.5% to 41.1%, respectively, between 1980-1990 and 2010-2015. Prevalence of HCMV-NAb at a titer of 16-fold decreased by 7.7%, whereas that at a titer of 100-fold increased by 5.6%. A high titer of HCMV-NAb in pregnant women is expected to reduce the risk of intrauterine HCMV transmission from the mother to the fetus. The association between the risk of congenital HCMV infection and the prevalence of HCMV-NAb remains to be addressed.


Asunto(s)
Anticuerpos Neutralizantes , Citomegalovirus , Anticuerpos Antivirales , Femenino , Humanos , Inmunoglobulina G , Japón/epidemiología , Embarazo , Prevalencia
20.
J Virol ; 96(7): e0004922, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35319224

RESUMEN

Heartland bandavirus (HRTV), which is an emerging tick-borne virus first identified in Missouri in 2009, causes fever, fatigue, decreased appetite, headache, nausea, diarrhea, and muscle or joint pain in humans. HRTV is genetically close to Dabie bandavirus, which is the causative agent of severe fever with thrombocytopenia syndrome (SFTS) in humans and is known as SFTS virus (SFTSV). The generation of infectious HRTV entirely from cloned cDNAs has not yet been reported. The absence of a reverse genetics system for HRTV has delayed efforts to understand its pathogenesis and to generate vaccines and antiviral drugs. Here, we developed a reverse genetics system for HRTV, which employs an RNA polymerase I-mediated expression system. A recombinant nonstructural protein (NSs)-knockout HRTV (rHRTV-NSsKO) was generated. We found that NSs interrupted signaling associated with innate immunity in HRTV-infected cells. The rHRTV-NSsKO was highly attenuated, indicated by the apparent absence of symptoms in a mouse model of HRTV infection. Moreover, mice immunized with rHRTV-NSsKO survived a lethal dose of HRTV. These findings suggest that NSs is a virulence factor of HRTV and that rHRTV-NSsKO could be a vaccine candidate for HRTV. IMPORTANCE Heartland bandavirus (HRTV) is a tick-borne virus identified in the United States in 2009. HRTV causes fever, fatigue, decreased appetite, headache, nausea, diarrhea, and muscle or joint pain in humans. FDA-approved vaccines and antiviral drugs are unavailable. The lack of a reverse genetics system hampers efforts to develop such antiviral therapeutics. Here, we developed a reverse genetics system for HRTV that led to the generation of a recombinant nonstructural protein (NSs)-knockout HRTV (rHRTV-NSsKO). We found that NSs interrupted signaling associated with innate immunity in HRTV-infected cells. Furthermore, rHRTV-NSsKO was highly attenuated and immunogenic in a mouse model. These findings suggest that NSs is a virulence factor of HRTV and that rHRTV-NSsKO could be a vaccine candidate for HRTV.


Asunto(s)
Phlebovirus , Genética Inversa , Proteínas no Estructurales Virales , Animales , Antivirales/metabolismo , Artralgia , Bunyaviridae/genética , Bunyaviridae/inmunología , Bunyaviridae/patogenicidad , Diarrea , Fatiga , Cefalea , Humanos , Inmunidad Innata/inmunología , Ratones , Náusea , Phlebovirus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Genética Inversa/métodos , Transducción de Señal/inmunología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Virulencia/genética , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA