Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
JHEP Rep ; 6(2): 100984, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38293685

RESUMEN

Background & Aims: Lipid droplet (LD) accumulation in cells and tissues is understood to be an evolutionarily conserved tissue tolerance mechanism to prevent lipotoxicity caused by excess lipids; however, the presence of excess LDs has been associated with numerous diseases. Sepsis triggers the reprogramming of lipid metabolism and LD accumulation in cells and tissues, including the liver. The functions and consequences of sepsis-triggered liver LD accumulation are not well known. Methods: Experimental sepsis was induced by CLP (caecal ligation and puncture) in mice. Markers of hepatic steatosis, liver injury, hepatic oxidative stress, and inflammation were analysed using a combination of functional, imaging, lipidomic, protein expression and immune-enzymatic assays. To prevent LD formation, mice were treated orally with A922500, a pharmacological inhibitor of DGAT1. Results: We identified that liver LD overload correlates with liver injury and sepsis severity. Moreover, the progression of steatosis from 24 h to 48 h post-CLP occurs in parallel with increased cytokine expression, inflammatory cell recruitment and oxidative stress. Lipidomic analysis of purified LDs demonstrated that sepsis leads LDs to harbour increased amounts of unsaturated fatty acids, mostly 18:1 and 18:2. An increased content of lipoperoxides within LDs was also observed. Conversely, the impairment of LD formation by inhibition of the DGAT1 enzyme reduces levels of hepatic inflammation and lipid peroxidation markers and ameliorates sepsis-induced liver injury. Conclusions: Our results indicate that sepsis triggers lipid metabolism alterations that culminate in increased liver LD accumulation. Increased LDs are associated with disease severity and liver injury. Moreover, inhibition of LD accumulation decreased the production of inflammatory mediators and lipid peroxidation while improving tissue function, suggesting that LDs contribute to the pathogenesis of liver injury triggered by sepsis. Impact and Implications: Sepsis is a complex life-threatening syndrome caused by dysregulated inflammatory and metabolic host responses to infection. The observation that lipid droplets may contribute to sepsis-associated organ injury by amplifying lipid peroxidation and inflammation provides a rationale for therapeutically targeting lipid droplets and lipid metabolism in sepsis.

2.
Mol Microbiol ; 120(6): 893-905, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37864403

RESUMEN

In the yeast Saccharomyces cerevisiae, the absence of the pseudouridine synthase Pus3/Deg1, which modifies tRNA positions 38 and 39, results in increased lipid droplet (LD) content and translational defects. In addition, starvation-like transcriptome alterations and induced protein aggregation were observed. In this study, we show that the deg1 mutant increases specific misreading errors. This could lead to altered expression of the main regulators of neutral lipid synthesis which are the acetyl-CoA carboxylase (Acc1), an enzyme that catalyzes a key step in fatty acid synthesis, and its regulator, the Snf1/AMPK kinase. We demonstrate that upregulation of the neutral lipid content of LD in the deg1 mutant is achieved by a mechanism operating in parallel to the known Snf1/AMPK kinase-dependent phosphoregulation of Acc1. While in wild-type cells removal of the regulatory phosphorylation site (Ser-1157) in Acc1 results in strong upregulation of triacylglycerol (TG), but not steryl esters (SE), the deg1 mutation more specifically upregulates SE levels. In order to elucidate if other lipid species are affected, we compared the lipidomes of wild type and deg1 mutants, revealing multiple altered lipid species. In particular, in the exponential phase of growth, the deg1 mutant shows a reduction in the pool of phospholipids, indicating a compromised capacity to mobilize acyl-CoA from storage lipids. We conclude that Deg1 plays a key role in the coordination of lipid storage and mobilization, which in turn influences lipid homeostasis. The lipidomic effects in the deg1 mutant may be indirect outcomes of the activation of various stress responses resulting from protein aggregation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Quinasas de la Proteína-Quinasa Activada por el AMP , Lipidómica , Lípidos , Agregado de Proteínas , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Chem Phys Lipids ; 257: 105348, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37827478

RESUMEN

Familial hypercholesterolemia (FH) is a disorder of lipid metabolism that causes elevated low-density lipoprotein cholesterol (LDL-c) and increased premature atherosclerosis risk. Statins inhibit endogenous cholesterol biosynthesis, which reduces LDL-c plasma levels and prevent from cardiovascular events. This study aimed to explore the effects of statin treatment on serum lipidomic profile and to identify biomarkers of response in subjects with FH. Seventeen adult FH patients underwent a 6-week washout followed by 4-week treatment with atorvastatin (80 mg/day) or rosuvastatin (40 mg/day). LDL-c response was considered good (40-70 % reduction, n = 9) or poor (3-33 % reduction, n = 8). Serum lipidomic profile was analyzed by ultra-high-performance liquid chromatography combined with electrospray ionization tandem time-of-flight mass spectrometry, and data were analyzed using MetaboAnalyst v5.0. Lipidomic analysis identified 353 lipids grouped into 16 classes. Statin treatment reduced drastically 8 of 13 lipid classes, generating a characteristic lipidomic profile with a significant contribution of phosphatidylinositols (PI) 16:0/18:2, 18:0/18:1 and 18:0/18:2; and triacylglycerols (TAG) 18:2x2/18:3, 18:1/18:2/18:3, 16:1/18:2x2, 16:1/18:2/18:3 and 16:1/18:2/Arachidonic acid (p-adjusted <0.05). Biomarker analysis implemented in MetaboAnalyst subsequently identified PI 16:1/18:0, 16:0/18:2 and 18:0/18:2 as predictors of statin response with and receiver operating characteristic (ROC) areas under the curve of 0.98, 0.94 and 0.91, respectively. In conclusion, statins extensively modulate the overall serum lipid composition of FH individuals and these findings suggest that phosphatidyl-inositol molecules are potential predictive biomarkers of statin response.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Hiperlipoproteinemia Tipo II , Adulto , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , LDL-Colesterol , Lipidómica , Hiperlipoproteinemia Tipo II/tratamiento farmacológico , Colesterol , Biomarcadores
4.
Free Radic Biol Med ; 208: 285-298, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37619957

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor neurons, systemic hypermetabolism, and inflammation. In this context, oxylipins have been investigated as signaling molecules linked to neurodegeneration, although their specific role in ALS remains unclear. Importantly, most methods focused on oxylipin analysis are based on low-resolution mass spectrometry, which usually confers high sensitivity, but not great accuracy for molecular characterization, as provided by high-resolution MS (HRMS). Here, we established an ultra-high performance liquid chromatography HRMS (LC-HRMS) method for simultaneous analysis of 126 oxylipins in plasma. Intra- and inter-day method validation showed high sensitivity (0.3-25 pg), accuracy and precision for more than 90% of quality controls. This method was applied in plasma of ALS rats overexpressing the mutant human Cu/Zn-superoxide dismutase gene (SOD1-G93A) at asymptomatic (ALS 70 days old) and symptomatic stages (ALS 120 days old), and their respective age-matched wild type controls. From the 56 oxylipins identified in plasma, 17 species were significantly altered. Remarkably, most of oxylipins linked to inflammation and oxidative stress derived from arachidonic acid (AA), like prostaglandins and mono-hydroxides, were increased in ALS 120 d rats. In addition, ketones derived from AA and linoleic acid (LA) were increased in both WT 120 d and ALS 120 d groups, supporting that age also modulates oxylipin metabolism in plasma. Interestingly, the LA-derived diols involved in fatty acid uptake and ß-oxidation, 9(10)-DiHOME and 12(13)-DiHOME, were decreased in ALS 120 d rats and showed significant synergic effects between age and disease factors. In summary, we validated a high-throughput LC-HRMS method for oxylipin analysis and provided a comprehensive overview of plasma oxylipins involved in ALS disease progression. Noteworthy, the oxylipins altered in plasma have potential to be investigated as biomarkers for inflammation and hypermetabolism in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Ratas , Humanos , Animales , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Oxilipinas , Espectrometría de Masas , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Inflamación , Modelos Animales de Enfermedad , Ratones Transgénicos , Superóxido Dismutasa/genética
5.
iScience ; 26(6): 106777, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37213234

RESUMEN

The retina is a notable tissue with high metabolic needs which relies on specialized vascular networks to protect the neural retina while maintaining constant supplies of oxygen, nutrients, and dietary essential fatty acids. Here we analyzed the lipidome of the mouse retina under healthy and pathological angiogenesis using the oxygen-induced retinopathy model. By matching lipid profiles to changes in mRNA transcriptome, we identified a lipid signature showing that pathological angiogenesis leads to intense lipid remodeling favoring pathways for neutral lipid synthesis, cholesterol import/export, and lipid droplet formation. Noteworthy, it also shows profound changes in pathways for long-chain fatty acid production, vital for retina homeostasis. The net result is accumulation of large quantities of mead acid, a marker of essential fatty acid deficiency, and a potential marker for retinopathy severity. Thus, our lipid signature might contribute to better understand diseases of the retina that lead to vision impairment or blindness.

6.
Mol Genet Metab ; 138(4): 107552, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36889041

RESUMEN

BACKGROUND AND AIMS: Low-density lipoprotein (LDL) plasma concentration decline is a biomarker for acute inflammatory diseases, including coronavirus disease-2019 (COVID-19). Phenotypic changes in LDL during COVID-19 may be equally related to adverse clinical outcomes. METHODS: Individuals hospitalized due to COVID-19 (n = 40) were enrolled. Blood samples were collected on days 0, 2, 4, 6, and 30 (D0, D2, D4, D6, and D30). Oxidized LDL (ox-LDL), and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity were measured. In a consecutive series of cases (n = 13), LDL was isolated by gradient ultracentrifugation from D0 and D6 and was quantified by lipidomic analysis. Association between clinical outcomes and LDL phenotypic changes was investigated. RESULTS: In the first 30 days, 42.5% of participants died due to Covid-19. The serum ox-LDL increased from D0 to D6 (p < 0.005) and decreased at D30. Moreover, individuals who had an ox-LDL increase from D0 to D6 to over the 90th percentile died. The plasma Lp-PLA2 activity also increased progressively from D0 to D30 (p < 0.005), and the change from D0 to D6 in Lp-PLA2 and ox-LDL were positively correlated (r = 0.65, p < 0.0001). An exploratory untargeted lipidomic analysis uncovered 308 individual lipids in isolated LDL particles. Paired-test analysis from D0 and D6 revealed higher concentrations of 32 lipid species during disease progression, mainly represented by lysophosphatidyl choline and phosphatidylinositol. In addition, 69 lipid species were exclusively modulated in the LDL particles from non-survivors as compared to survivors. CONCLUSIONS: Phenotypic changes in LDL particles are associated with disease progression and adverse clinical outcomes in COVID-19 patients and could serve as a potential prognostic biomarker.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa , COVID-19 , Humanos , Lipoproteínas LDL , Biomarcadores , Lisofosfatidilcolinas
7.
Artículo en Inglés | MEDLINE | ID: mdl-36535597

RESUMEN

Total absence of adipose tissue (lipoatrophy) is associated with the development of severe metabolic disorders including hepatomegaly and fatty liver. Here, we sought to investigate the impact of severe lipoatrophy induced by deletion of peroxisome proliferator-activated receptor gamma (PPARγ) exclusively in adipocytes on lipid metabolism in mice. Untargeted lipidomics of plasma, gastrocnemius and liver uncovered a systemic depletion of the essential linoleic (LA) and α-linolenic (ALA) fatty acids from several lipid classes (storage lipids, glycerophospholipids, free fatty acids) in lipoatrophic mice. Our data revealed that such essential fatty acid depletion was linked to increased: 1) capacity for liver mitochondrial fatty acid ß-oxidation (FAO), 2) citrate synthase activity and coenzyme Q content in the liver, 3) whole-body oxygen consumption and reduced respiratory exchange rate in the dark period, and 4) de novo lipogenesis and carbon flux in the TCA cycle. The key role of de novo lipogenesis in hepatic steatosis was evidenced by an accumulation of stearic, oleic, sapienic and mead acids in liver. Our results thus indicate that the simultaneous activation of the antagonic processes FAO and de novo lipogenesis in liver may create a futile metabolic cycle leading to a preferential depletion of LA and ALA. Noteworthy, this previously unrecognized cycle may also explain the increased energy expenditure displayed by lipoatrophic mice, adding a new piece to the metabolic regulation puzzle in lipoatrophies.


Asunto(s)
Hígado Graso , Lipogénesis , Animales , Ratones , Ciclo del Sustrato , Metabolismo de los Lípidos , Hígado Graso/metabolismo , Ácido alfa-Linolénico/metabolismo
8.
Clin Nutr ESPEN ; 51: 336-344, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36184225

RESUMEN

BACKGROUND & AIMS: Dyslipidaemia is usually common in obesity, insulin resistance, and type 2 diabetes mellitus. Clinical trials suggest that orange juice may have a positive impact on lipid metabolism and blood lipid profiles; however conflicting results have been reported. Here, we applied a combined untargeted/targeted lipidomic analysis of plasma to examine the impact of orange (Citrus sinensis) juice intake on the lipidome profile of obese and insulin-resistant subjects. METHODS: Twenty-five participants, both sexes, aged 40-60 years, with obesity and insulin resistance (homeostasis model assessment of insulin resistance (HOMA-IR) index >2.71) ingested 400 mL of orange juice 'Pera' (C. sinensis) for 15 d. Cardiometabolic biomarkers, anthropometric parameters, blood pressure, and plasma lipidomic analysis results were assessed at the beginning and end of the intervention. RESULTS: After the 15-d intervention, a significant decrease was observed in the diastolic blood pressure and blood lipid profile. Among plasma lipidomes, 316 lipid molecules were identified, with the triglycerides (TGs) subclass being the most abundant (n = 106). Plasma lipidome profiling revealed a major signature of the intervention; with concentrations of 37 TG species decreasing after intervention. Qualitatively, oleic and linoleic acids were among the most prevalent fatty acids linked to the altered TG species, representing 50% of TG chains. Modulated TG species were positively correlated with total TG and very low-density lipoprotein levels, as well as systolic and diastolic blood pressure. A strong inter-individual trend was observed, wherein, compared with less responsive subjects, the high responsive subjects displayed the highest decrease in the concentrations of altered TG species, as as well as systolic blood pressure (decrease of 10.3 ± 6.8 mmHg) and body weight (decrease of 0.67 ± 0.71 kg). CONCLUSIONS: These findings suggest that orange juice has a positive impact on lipid metabolism, mainly regarding the composition of TG-specific fatty acid chains and cholesterol esters, protecting against insulin resistance. Furthermore, lipidomics may help clarify alterations at the molecular level after an intervention, contributing to improve the evaluation of the link between dyslipidaemia, insulin resistance, and nutrition.


Asunto(s)
Citrus sinensis , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Biomarcadores , Ésteres del Colesterol , Citrus sinensis/metabolismo , Ácidos Grasos , Insulina , Resistencia a la Insulina/fisiología , Ácidos Linoleicos , Lipoproteínas LDL , Obesidad , Triglicéridos
9.
Biochim Biophys Acta Bioenerg ; 1863(7): 148587, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35780857

RESUMEN

Cardiolipin is the signature phospholipid of the mitochondrial inner membrane. It participates in shaping the inner membrane as well as in modulating the activity of many membrane-bound proteins. The acyl chain composition of cardiolipin is finely tuned post-biosynthesis depending on the surrounding phospholipids to produce mature or unsaturated cardiolipin. However, experimental evidence showing that immature and mature cardiolipin are functionally equivalents for mitochondria poses doubts on the relevance of cardiolipin remodeling. In this work, we studied the role of cardiolipin acyl chain composition in mitochondrial bioenergetics, including a detailed bioenergetic profile of yeast mitochondria. Cardiolipin acyl chains were modified by genetic and nutritional manipulation. We found that both the bioenergetic efficiency and osmotic stability of mitochondria are dependent on the unsaturation level of cardiolipin acyl chains. It is proposed that cardiolipin remodeling and, consequently, mature cardiolipins play an important role in mitochondrial inner membrane integrity and functionality.


Asunto(s)
Cardiolipinas , Saccharomyces cerevisiae , Cardiolipinas/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/metabolismo
10.
Biochim Biophys Acta Mol Basis Dis ; 1868(6): 166371, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35218894

RESUMEN

Cardiovascular manifestations account for marked morbi-mortality in autosomal dominant polycystic kidney disease (ADPKD). Pkd1- and Pkd2-deficient mice develop cardiac dysfunction, however the underlying mechanisms remain largely unclear. It is unknown whether impairment of polycystin-1 cleavage at the G-protein-coupled receptor proteolysis site, a significant ADPKD mutational mechanism, is involved in this process. We analyzed the impact of polycystin-1 cleavage on heart metabolism using Pkd1V/V mice, a model unable to cleave this protein and with early cardiac dysfunction. Pkd1V/V hearts showed lower levels of glucose and amino acids and higher lipid levels than wild-types, as well as downregulation of p-AMPK, p-ACCß, CPT1B-Cpt1b, Ppara, Nppa and Acta1. These findings suggested decreased fatty acid ß-oxidation, which was confirmed by lower oxygen consumption by Pkd1V/V isolated mitochondria using palmitoyl-CoA. Pkd1V/V hearts also presented increased oxygen consumption in response to glucose, suggesting that alternative substrates may be used to generate energy. Pkd1V/V hearts displayed a higher density of decreased-size mitochondria, a finding associated with lower MFN1, Parkin and BNIP3 expression. These derangements were correlated with increased apoptosis and inflammation but not hypertrophy. Notably, Pkd1V/V neonate cardiomyocytes also displayed shifts in oxygen consumption and p-AMPK downregulation, suggesting that, at least partially, the metabolic alterations are not induced by kidney dysfunction. Our findings reveal that disruption of polycystin-1 cleavage leads to cardiac metabolic rewiring in mice, expanding the understanding of heart dysfunction associated with Pkd1 deficiency and likely with human ADPKD.


Asunto(s)
Riñón Poliquístico Autosómico Dominante , Canales Catiónicos TRPP , Animales , Corazón , Ratones , Mitocondrias/metabolismo , Mutación , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
11.
J Mol Graph Model ; 112: 108125, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35101729

RESUMEN

The Carnitine Palmitoyltranferase I (CPT1) catalyzes the rate-limiting step of long-chain fatty acid (LCFA) mitochondrial ß-oxidation. The enzyme promotes the conjugation of LCFA with l-carnitine, which allows LCFA to enter the mitochondria matrix. The structural features involved in CPT1 and LCFA-CoA interactions have not been fully elucidated, mainly due to the absence of CPT1 crystallographic data. Previous studies reported important residues (Lys556, Lys560, and Lys561) crucial to the CPT1 mechanism. Nonetheless, these studies have not explored the LCFA bindings. Using molecular modeling strategies, we aimed to understand the conformational changes in CPT1 structure induced by LCFA-CoA. For this purpose, a tridimensional CPT1A model was built by homology modeling using CRAT protein (PBD:1t7q, resolution 1.8 Å) as a template. We simulated the CPT1 structure in the presence and absence of LCFA-CoA by molecular dynamics (MD). By applying a principal component analysis (PCA), two states of apostructure CPT1 based on CoA-Loop (688-711) were observed. In contrast, just one state was evidenced along with smaller conformational subspaces in ligand-complexed simulations using LCFA-CoA. The CoA moiety of ligands interacts with charged residues, namely Lys560, Lys556, Arg563, and Arg645. The frequency of interactions observed for each of these residues is <60% of simulation time, suggesting a dynamic profile of interactions in synergy with long-chain carbon interactions over α-I (478-492). Collectively, these features may be associated with the catalytic conformation of LCFA-CoA to CPT1a. Further calculations of free-energy for different fatty acids, such as alpha-linolenic (ALA), gamma-linolenic (GLA), and arachidonic (ARA) acids, yielded energy values ranging from -76.9 ± 15.9 to -68.5 ± 10.0 kcal mol-1. In conclusion, the present structural model and simulations provide molecular-level insights into LCFA-CoA and CPT1a interactions. These findings may help to further knowledge on the conformational changes of CPT1a induced by LCFA-CoA derivates.


Asunto(s)
Acilcoenzima A , Carnitina O-Palmitoiltransferasa , Carnitina , Carnitina O-Palmitoiltransferasa/química , Carnitina O-Palmitoiltransferasa/metabolismo , Ácidos Grasos , Ligandos , Oxidación-Reducción
12.
J Physiol Biochem ; 78(1): 283-294, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35023023

RESUMEN

Typically, healthy cardiac tissue utilizes more fat than any other organ. Cardiac hypertrophy induces a metabolic shift leading to a preferential consumption of glucose over fatty acids to support the high energetic demand. Calorie restriction is a dietary procedure that induces health benefits and lifespan extension in many organisms. Given the beneficial effects of calorie restriction, we hypothesized that calorie restriction prevents cardiac hypertrophy, lipid content changes, mitochondrial and redox dysregulation. Strikingly, calorie restriction reversed isoproterenol-induced cardiac hypertrophy. Isolated mitochondria from hypertrophic hearts produced significantly higher levels of succinate-driven H2O2 production, which was blocked by calorie restriction. Cardiac hypertrophy lowered mitochondrial respiratory control ratios, and decreased superoxide dismutase and glutathione peroxidase levels. These effects were also prevented by calorie restriction. We performed lipidomic profiling to gain insights into how calorie restriction could interfere with the metabolic changes induced by cardiac hypertrophy. Calorie restriction protected against the consumption of several triglycerides (TGs) linked to unsaturated fatty acids. Also, this dietary procedure protected against the accumulation of TGs containing saturated fatty acids observed in hypertrophic samples. Cardiac hypertrophy induced an increase in ceramides, phosphoethanolamines, and acylcarnitines (12:0, 14:0, 16:0, and 18:0). These were all reversed by calorie restriction. Altogether, our data demonstrate that hypertrophy changes the cardiac lipidome, causes mitochondrial disturbances, and oxidative stress. These changes are prevented (at least partially) by calorie restriction intervention in vivo. This study uncovers the potential for calorie restriction to become a new therapeutic intervention against cardiac hypertrophy, and mechanisms in which it acts.


Asunto(s)
Restricción Calórica , Lipidómica , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/prevención & control , Humanos , Peróxido de Hidrógeno/metabolismo , Isoproterenol/metabolismo , Isoproterenol/toxicidad , Mitocondrias/metabolismo , Oxidación-Reducción , Estrés Oxidativo
14.
Nanomedicine ; 36: 102418, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34171470

RESUMEN

Radiation induces the generation of platelet-activating factor receptor (PAF-R) ligands, including PAF and oxidized phospholipids. Alternatively, PAF is also synthesized by the biosynthetic enzymes lysophosphatidylcholine acyltransferases (LPCATs) which are expressed by tumor cells including melanoma. The activation of PAF-R by PAF and oxidized lipids triggers a survival response protecting tumor cells from radiation-induced cell death, suggesting the involvement of the PAF/PAF-R axis in radioresistance. Here, we investigated the role of LPCATs in the melanoma cell radiotherapy response. LPCAT is a family of four enzymes, LPCAT1-4, and modular nucleic acid nanoparticles (NANPs) allowed for the simultaneous silencing of all four LPCATs. We found that the in vitro simultaneous silencing of all four LPCAT transcripts by NANPs enhanced the therapeutic effects of radiation in melanoma cells by increasing cell death, reducing long-term cell survival, and activating apoptosis. Thus, we propose that NANPs are an effective strategy for improving radiotherapy efficacy in melanomas.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa , Silenciador del Gen , Melanoma , Nanopartículas , Proteínas de Neoplasias , Ácidos Nucleicos , 1-Acilglicerofosfocolina O-Aciltransferasa/antagonistas & inhibidores , 1-Acilglicerofosfocolina O-Aciltransferasa/biosíntesis , Línea Celular Tumoral , Humanos , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Nanopartículas/química , Nanopartículas/uso terapéutico , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/biosíntesis , Ácidos Nucleicos/química , Ácidos Nucleicos/farmacología
15.
J Nutr Biochem ; 97: 108809, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34192591

RESUMEN

Postprandial lipemia consists of changes in concentrations and composition of plasma lipids after food intake, commonly presented as increased levels of triglyceride-rich lipoproteins. Postprandial hypertriglyceridemia may also affect high-density lipoprotein (HDL) structure and function, resulting in a net decrease in HDL concentrations. Elevated triglycerides (TG) and reduced HDL levels have been positively associated with risk of cardiovascular diseases development. Here, we investigated the plasma lipidome composition of 12 clinically healthy, nonobese and young women in response to an acute high-caloric (1135 kcal) and high-fat (64 g) breakfast meal. For this purpose, we employed a detailed untargeted mass spectrometry-based lipidomic approach and data was obtained at four sampling points: fasting and 1, 3 and 5 h postprandial. Analysis of variance revealed 73 significantly altered lipid species between all sampling points. Nonetheless, two divergent subgroups have emerged at 5 h postprandial as a function of differential plasma lipidome responses, and were thereby designated slow and fast TG metabolizers. Late responses by slow TG metabolizers were associated with increased concentrations of several species of TG and phosphatidylinositol (PI). Lipidomic analysis of lipoprotein fractions at 5 h postprandial revealed higher TG and PI concentrations in HDL from slow relative to fast TG metabolizers, but not in apoB-containing fraction. These data indicate that modulations in HDL lipidome during prolonged postprandial lipemia may potentially impact HDL functions. A comprehensive characterization of plasma lipidome responses to acute metabolic challenges may contribute to a better understanding of diet/lifestyle regulation in the metabolism of lipid and glucose.


Asunto(s)
Grasas de la Dieta/administración & dosificación , Lípidos/sangre , Comidas , Periodo Posprandial , Adulto , Ayuno , Femenino , Humanos , Lipidómica , Lipoproteínas/sangre , Lipoproteínas HDL/metabolismo , Triglicéridos/sangre , Triglicéridos/metabolismo , Adulto Joven
16.
Artículo en Inglés | MEDLINE | ID: mdl-34004356

RESUMEN

The nutrient sensors peroxisome proliferator-activated receptor γ (PPARγ) and mechanistic target of rapamycin complex 1 (mTORC1) closely interact in the regulation of adipocyte lipid storage. The precise mechanisms underlying this interaction and whether this extends to other metabolic processes and the endocrine function of adipocytes are still unknown. We investigated herein the involvement of mTORC1 as a mediator of the actions of the PPARγ ligand rosiglitazone in subcutaneous inguinal white adipose tissue (iWAT) mass, endocrine function, lipidome, transcriptome and branched-chain amino acid (BCAA) metabolism. Mice bearing regulatory associated protein of mTOR (Raptor) deletion and therefore mTORC1 deficiency exclusively in adipocytes and littermate controls were fed a high-fat diet supplemented or not with the PPARγ agonist rosiglitazone (30 mg/kg/day) for 8 weeks and evaluated for iWAT mass, lipidome, transcriptome (Rnaseq), respiration and BCAA metabolism. Adipocyte mTORC1 deficiency not only impaired iWAT adiponectin transcription, synthesis and secretion, PEPCK mRNA levels, triacylglycerol synthesis and BCAA oxidation and mRNA levels of related proteins but also completely blocked the upregulation in these processes induced by pharmacological PPARγ activation with rosiglitazone. Mechanistically, adipocyte mTORC1 deficiency impairs PPARγ transcriptional activity by reducing PPARγ protein content, as well as by downregulating C/EBPα, a co-partner and facilitator of PPARγ. In conclusion, mTORC1 and PPARγ are essential partners involved in the regulation of subcutaneous adipose tissue adiponectin production and secretion and BCAA oxidative metabolism.


Asunto(s)
Adiponectina/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Glicerol/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , PPAR gamma/metabolismo , Grasa Subcutánea/metabolismo , Regulación hacia Arriba , Animales , Ratones , Oxidación-Reducción
17.
PLoS Negl Trop Dis ; 15(4): e0009388, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33930014

RESUMEN

The 2015-2016 Zika virus (ZIKV) outbreak in Brazil was remarkably linked to the incidence of microcephaly and other deleterious clinical manifestations, including eye abnormalities, in newborns. It is known that ZIKV targets the placenta, triggering an inflammatory profile that may cause placental insufficiency. Transplacental lipid transport is delicately regulated during pregnancy and deficiency on the delivery of lipids such as arachidonic and docosahexaenoic acids may lead to deficits in both brain and retina during fetal development. Here, plasma lipidome profiles of ZIKV exposed microcephalic and normocephalic newborns were compared to non-infected controls. Our results reveal major alterations in circulating lipids from both ZIKV exposed newborns with and without microcephaly relative to controls. In newborns with microcephaly, the plasma concentrations of hydroxyoctadecadienoic acid (HODE), primarily as 13-HODE isomer, derived from linoleic acid were higher as compared to normocephalic ZIKV exposed newborns and controls. Total HODE concentrations were also positively associated with levels of other oxidized lipids and several circulating free fatty acids in newborns, indicating a possible plasma lipidome signature of microcephaly. Moreover, higher concentrations of lysophosphatidylcholine in ZIKV exposed normocephalic newborns relative to controls suggest a potential disruption of polyunsaturated fatty acids transport across the blood-brain barrier of fetuses. The latter data is particularly important given the neurocognitive and neurodevelopmental abnormalities observed in follow-up studies involving children with antenatal ZIKV exposure, but normocephalic at birth. Taken together, our data reveal that plasma lipidome alterations associated with antenatal exposure to ZIKV could contribute to identification and monitoring of the wide spectrum of clinical phenotypes at birth and further, during childhood.


Asunto(s)
Anomalías del Ojo/epidemiología , Lípidos/sangre , Microcefalia/epidemiología , Complicaciones Infecciosas del Embarazo/virología , Infección por el Virus Zika/congénito , Brasil/epidemiología , Brotes de Enfermedades , Anomalías del Ojo/sangre , Anomalías del Ojo/virología , Femenino , Estudios de Seguimiento , Humanos , Recién Nacido , Enfermedades del Recién Nacido/epidemiología , Transmisión Vertical de Enfermedad Infecciosa/estadística & datos numéricos , Masculino , Microcefalia/sangre , Microcefalia/virología , Embarazo , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/sangre , Infección por el Virus Zika/transmisión
18.
J Biol Chem ; 296: 100344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33524391

RESUMEN

A low-sodium (LS) diet has been shown to reduce blood pressure (BP) and the incidence of cardiovascular diseases. However, severe dietary sodium restriction promotes insulin resistance (IR) and dyslipidemia in animal models and humans. Thus, further clarification of the long-term consequences of LS is needed. Here, we investigated the effects of chronic LS on gastrocnemius gene and protein expression and lipidomics and its association with IR and plasma lipids in LDL receptor knockout mice. Three-month-old male mice were fed a normal sodium diet (NS; 0.5% Na; n = 12-19) or LS (0.06% Na; n = 14-20) over 90 days. Body mass (BM), BP, plasma total cholesterol, triacylglycerol (TG), glucose, hematocrit, and IR were evaluated. LS increased BM (9%), plasma TG (51%), blood glucose (19%), and IR (46%) when compared with the NS. RT-qPCR analysis revealed that genes involved in lipid uptake and oxidation were increased by the LS: Fabp3 (106%), Prkaa1 (46%), and Cpt1 (74%). Genes and proteins (assessed by Western blotting) involved in insulin signaling were not changed by the LS. Similarly, lipid species classically involved in muscle IR, such as diacylglycerols and ceramides detected by ultra-high-performance liquid chromatography coupled to mass spectrometry, were also unchanged by LS. Species of phosphatidylcholines (68%), phosphatidylinositol (90%), and free fatty acids (59%) increased while cardiolipins (41%) and acylcarnitines (9%) decreased in gastrocnemius in response to LS and were associated with glucose disposal rate. Together these results suggest that chronic LS alters glycerophospholipid and fatty acids species in gastrocnemius that may contribute to glucose and lipid homeostasis derangements in mice.


Asunto(s)
Dieta Hiposódica , Resistencia a la Insulina , Metabolismo de los Lípidos , Músculo Esquelético/metabolismo , Animales , Lipidómica , Masculino , Ratones , Sodio en la Dieta/metabolismo
19.
J Nutr Biochem ; 87: 108519, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33017610

RESUMEN

Dietary sugar is an important determinant of the development and progression of nonalcoholic fatty liver disease (NAFLD). However, the molecular mechanisms underlying the deleterious effects of sugar intake on NAFLD under energy-balanced conditions are still poorly understood. Here, we provide a comprehensive analysis of the liver lipidome and mechanistic insights into the pathogenesis of NAFLD induced by the chronic consumption of high-sugar diet (HSD). Newly weaned male Wistar rats were fed either a standard chow diet or an isocaloric HSD for 18 weeks. Livers were harvested for histological, oxidative stress, gene expression, and lipidomic analyses. Intake of HSD increased oxidative stress and induced severe liver injury, microvesicular steatosis, and ballooning degeneration of hepatocytes. Using untargeted lipidomics, we identified and quantified 362 lipid species in the liver. Rats fed with HSD displayed increased hepatic levels of triacylglycerol enriched in saturated and monounsaturated fatty acids, lipids related to mitochondrial function/structure (phosphatidylglycerol, cardiolipin, and ubiquinone), and acylcarnitine (an intermediate lipid of fatty acid beta-oxidation). HSD-fed animals also presented increased levels of some species of membrane lipids and a decreased content of phospholipids containing omega-6 fatty acids. These changes in the lipidome were associated with the downregulation of genes involved in fatty acid oxidation in the liver. In conclusion, our data suggest that the chronic intake of a HSD, even under isocaloric conditions, induces lipid overload, and inefficient/impaired fatty acid oxidation in the liver. Such events lead to marked disturbance in hepatic lipid metabolism and the development of NAFLD.


Asunto(s)
Dieta de Carga de Carbohidratos/efectos adversos , Metabolismo de los Lípidos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Lipidómica , Masculino , Redes y Vías Metabólicas , Ratas Wistar
20.
Cell Death Dis ; 11(12): 1070, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33318476

RESUMEN

Lack of effective treatments for aggressive breast cancer is still a major global health problem. We have previously reported that photodynamic therapy using methylene blue as photosensitizer (MB-PDT) massively kills metastatic human breast cancer, marginally affecting healthy cells. In this study, we aimed to unveil the molecular mechanisms behind MB-PDT effectiveness and specificity towards tumor cells. Through lipidomics and biochemical approaches, we demonstrated that MB-PDT efficiency and specificity rely on polyunsaturated fatty acid-enriched membranes and on the better capacity to deal with photo-oxidative damage displayed by non-tumorigenic cells. We found out that, in tumorigenic cells, lysosome membrane permeabilization is accompanied by ferroptosis and/or necroptosis. Our results also pointed at a cross-talk between lysosome-dependent cell death (LDCD) and necroptosis induction after photo-oxidation, and contributed to broaden the understanding of MB-PDT-induced mechanisms and specificity in breast cancer cells. Therefore, we demonstrated that efficient approaches could be designed on the basis of lipid composition and metabolic features for hard-to-treat cancers. The results further reinforce MB-PDT as a therapeutic strategy for highly aggressive human breast cancer cells.


Asunto(s)
Neoplasias de la Mama/patología , Luz , Antioxidantes/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Carcinogénesis/efectos de la radiación , Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación , Línea Celular Tumoral , Femenino , Ferroptosis/efectos de los fármacos , Ferroptosis/efectos de la radiación , Humanos , Lípidos/química , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/efectos de la radiación , Azul de Metileno/farmacología , Azul de Metileno/uso terapéutico , Modelos Biológicos , Necroptosis/efectos de los fármacos , Necroptosis/efectos de la radiación , Oxidación-Reducción , Fotoquimioterapia , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA