Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Rinsho Shinkeigaku ; 64(8): 557-563, 2024 Aug 27.
Artículo en Japonés | MEDLINE | ID: mdl-39069492

RESUMEN

The patient was an 85-year-old man with a one-year history of difficulty reading kana. Neuropsychological evaluation revealed kana (phonogram)-selective reading impairment and kanji (ideogram)-dominant writing impairment. MRI revealed significant cerebral atrophy in the left occipital cortex, leading to the clinical diagnosis of posterior cortical atrophy (PCA). Cerebrospinal fluid amyloid ß1-42 levels were reduced, and amyloid PET showed accumulation in the posterior cingulate cortex, precuneus, and frontal lobe. In contrast, tau PET showed no accumulation in the atrophied brain areas. Episodes of REM sleep behavior disorder and decreased uptake on meta-iodobenzylguanidine (MIBG) myocardial scintigraphy suggested the involvement of Lewy body pathology. PCA with distinct laterality has been rarely reported, and |this is the first case to present Kana-selective reading impairment and Kanji-dominant writing impairment with neurodegenerative background.


Asunto(s)
Atrofia , Imagen por Resonancia Magnética , Humanos , Masculino , Anciano de 80 o más Años , Tomografía de Emisión de Positrones , Dislexia/etiología , Corteza Cerebral/patología , Corteza Cerebral/diagnóstico por imagen , Biomarcadores/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Lóbulo Occipital/patología , Lóbulo Occipital/diagnóstico por imagen , Cuerpos de Lewy/patología , Trastorno de la Conducta del Sueño REM/etiología , Trastorno de la Conducta del Sueño REM/diagnóstico por imagen , Trastorno de la Conducta del Sueño REM/diagnóstico
2.
Mol Ther Nucleic Acids ; 35(2): 102161, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38978695

RESUMEN

An increasing number of antisense oligonucleotides (ASOs) have been approved for clinical use. However, improvements of both efficacy and safety in the central nervous system (CNS) are crucial for the treatment with CNS diseases. We aimed to overcome the crucial issues by our development of various gapmer ASOs with a novel nucleoside derivative including a 2',4'-BNA/LNA with 9-(aminoethoxy)phenoxazine (BNAP-AEO). The various gapmer ASOs with BNAP-AEO were evaluated for thermal stability, in vitro and in vivo efficacy, and acute CNS toxicity. Thermal stability analysis of the duplexes with their complementary RNAs showed that ASOs with BNAP-AEO had a higher binding affinity than those without BNAP-AEO. In vitro assays, when transfected into neuroblastoma cell lines, demonstrated that ASOs with BNAP-AEO, had a more efficient gene silencing effect than those without BNAP-AEO. In vivo assays, involving intracerebroventricular injections into mice, revealed ASOs with BNAP-AEO potently suppressed gene expression in the brain. Surprisingly, the acute CNS toxicity in mice, as assessed through open field tests and scoring systems, was significantly lower for ASOs with BNAP-AEO than for those without BNAP-AEO. This study underscores the efficient gene-silencing effect and low acute CNS toxicity of ASOs incorporating BNAP-AEO, indicating the potential for future therapeutic applications.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38205778

RESUMEN

Recently, we found DNA/RNA heteroduplex oligonucleotide-based antimiR (HDO-antimiR) can more efficiently inhibit the target miRNA than conventional antimiR after its cellular uptake. But the mechanism of HDO-antimiR about the target-silencing is unknown. We here tried to elucidate the interaction mechanism of HDO-antimiR to miRNA using molecular dynamics (MD) simulation. When interaction of the conventional antimiR or HDO-antimiR and the target miRNA was simulated, they combined with each other in various forms. In the hydrogen bond analyses, base site of the antimiR formed hydrogen bond with miRNA. On the other hand, phosphate site of the HDO-antimiR formed hydrogen bond with miRNA. These results suggested that there were differences about the binding mechanisms between antimiR and HDO-antimiR to the target miRNA. In particular, there was a difference in the binding site between antimiR and HDO-antimiR. Additionally, it was found that guanine in the miRNA is mainly involved in the binding to the antimiR or HDO-antimiR. MD simulation method is useful in understanding the mechanism of oligonucleotide therapeutics.

5.
J Org Chem ; 88(4): 2207-2213, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36745736

RESUMEN

The central carbonyl group of diethyl mesoxalate (DEMO) exhibits high electrophilicity that allows it to be attacked by versatile nucleophiles. Even a less nucleophilic acid amide serves as a nucleophile to produce N,O-acetal upon treatment with DEMO in the presence of acetic anhydride. When the obtained N,O-acetal was treated with a base, the elimination of acetic acid generated N-acylimine in situ. N-Acylimine is also highly electrophilic, allowing it to accept the second nucleophilic addition by an amine, resulting in α,α-bis(functionalized) aminals. This protocol facilitates the modification of the two different amino groups by altering nucleophiles, resulting in the production of tetra-functionalized methane derivatives on demand. The ring closure between the amide moiety and the amino group was achieved using the structural features to form a six-membered ring.

6.
Mol Biol Rep ; 50(4): 3539-3546, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36787053

RESUMEN

BACKGROUND: The co-administration of several therapeutic oligonucleotides targeting the same transcript is a beneficial approach. It broadens the target sites for diseases associated with various mutations or splice variants. However, little is known how a combination of antisense oligonucleotides (ASOs), which is one of the major modalities of therapeutic oligonucleotides, affects the potency. In this study, we aimed to elucidate the combination-effects of ASOs and the relationship between the target sites and potency of different combinations. METHOD AND RESULTS: We designed 113 ASOs targeting human superoxide dismutase 1 pre-mRNA and found 13 ASOs that had comparable silencing activity in vitro. An analysis of combination-effects on the silencing potency of 37 pairs of two ASOs on HeLa cells revealed that 29 pairs had comparable potency to that of two ASOs; on the other hand, eight pairs had reduced potency, indicating a negative impact on the activity. A reduced potency was seen in pairs targeting the same intron, exon-intron combination, or two different introns. The sequence distance of target sites was not the major determinant factor of combination-effects. In addition, a combination of three ASOs preserving the potency could be designed by avoiding two-ASO pairs, which had a reduced potency. CONCLUSIONS: This study revealed that more than half of the combinations retain their potency by paring two ASOs; in contrast, some pairs had a reduced potency. This could not be predicted only by the distance between the target sites.


Asunto(s)
Oligonucleótidos Antisentido , Oligonucleótidos , Humanos , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Células HeLa , Exones/genética , Precursores del ARN
7.
Mol Ther Nucleic Acids ; 31: 182-196, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36700050

RESUMEN

Antisense oligonucleotides (ASOs) are promising therapeutics for intractable central nervous system (CNS) diseases. For this clinical application, neurotoxicity is one of the critical limitations. Therefore, an evaluation of this neurotoxicity from a behavioral perspective is important to reveal symptomatic dysfunction of the CNS and elucidate the underlying molecular mechanism. We here exploited a behavioral analysis method to categorize and quantify the acute neurotoxicity of mice administered with toxic ASOs via intracerebroventricular injection. The toxic ASOs were found to reduce consciousness and locomotor function in mice in a dose-dependent manner. Mechanistically, we analyzed the effects of modulators against receptors or channels, which regulate calcium influx of neurons, on the ASO neurotoxicity. Modulators promoting calcium influx mitigated, whereas those hindering calcium influx increased, in vivo neurotoxicity of ASOs in mice. In an in vitro assay to evaluate intracellular free calcium levels using rat primary cortical neurons, toxic ASOs reduced the calcium levels. The findings of this study demonstrated the behavioral characteristics of ASO-induced neurotoxicity and revealed that changes in intracellular free calcium levels are a part of the mechanism underlying the neurotoxic effects of ASO.

8.
Circ Res ; 132(4): 415-431, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36700539

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) accelerates vascular calcification via phenotypic switching of vascular smooth muscle cells (VSMCs). We investigated the roles of circulating small extracellular vesicles (sEVs) between the kidneys and VSMCs and uncovered relevant sEV-propagated microRNAs (miRNAs) and their biological signaling pathways. METHODS AND RESULTS: We established CKD models in rats and mice by adenine-induced tubulointerstitial fibrosis. Cultures of A10 embryonic rat VSMCs showed increased calcification and transcription of osterix (Sp7), osteocalcin (Bglap), and osteopontin (Spp1) when treated with rat CKD serum. sEVs, but not sEV-depleted serum, accelerated calcification in VSMCs. Intraperitoneal administration of a neutral sphingomyelinase and biogenesis/release inhibitor of sEVs, GW4869 (2.5 mg/kg per 2 days), inhibited thoracic aortic calcification in CKD mice under a high-phosphorus diet. GW4869 induced a nearly full recovery of calcification and transcription of osteogenic marker genes. In CKD, the miRNA transcriptome of sEVs revealed a depletion of 4 miRNAs, miR-16-5p, miR-17~92 cluster-originated miR-17-5p/miR-20a-5p, and miR-106b-5p. Their expression decreased in sEVs from CKD patients as kidney function deteriorated. Transfection of VSMCs with each miRNA-mimic mitigated calcification. In silico analyses revealed VEGFA (vascular endothelial growth factor A) as a convergent target of these miRNAs. We found a 16-fold increase in VEGFA transcription in the thoracic aorta of CKD mice under a high-phosphorus diet, which GW4869 reversed. Inhibition of VEGFA-VEGFR2 signaling with sorafenib, fruquintinib, sunitinib, or VEGFR2-targeted siRNA mitigated calcification in VSMCs. Orally administered fruquintinib (2.5 mg/kg per day) for 4 weeks suppressed the transcription of osteogenic marker genes in the mouse aorta. The area under the curve of miR-16-5p, miR-17-5p, 20a-5p, and miR-106b-5p for the prediction of abdominal aortic calcification was 0.7630, 0.7704, 0.7407, and 0.7704, respectively. CONCLUSIONS: The miRNA transcriptomic signature of circulating sEVs uncovered their pathologic role, devoid of the calcification-protective miRNAs that target VEGFA signaling in CKD-driven vascular calcification. These sEV-propagated miRNAs are potential biomarkers and therapeutic targets for vascular calcification.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Insuficiencia Renal Crónica , Calcificación Vascular , Ratas , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Calcificación Vascular/metabolismo , Insuficiencia Renal Crónica/metabolismo , Vesículas Extracelulares/metabolismo , Fósforo/metabolismo , Miocitos del Músculo Liso/metabolismo
9.
Mol Ther ; 31(4): 1106-1122, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36694463

RESUMEN

Antisense oligonucleotide (ASO) is a major tool used for silencing pathogenic genes. For stroke in the hyperacute stage, however, the ability of ASO to regulate genes is limited by its poor delivery to the ischemic brain owing to sudden occlusion of the supplying artery. Here we show that, in a mouse model of permanent ischemic stroke, lipid-ligand conjugated DNA/RNA heteroduplex oligonucleotide (lipid-HDO) was unexpectedly delivered 9.6 times more efficiently to the ischemic area of the brain than to the contralateral non-ischemic brain and achieved robust gene knockdown and change of stroke phenotype, despite a 90% decrease in cerebral blood flow in the 3 h after occlusion. This delivery to neurons was mediated via receptor-mediated transcytosis by lipoprotein receptors in brain endothelial cells, the expression of which was significantly upregulated after ischemia. This study provides proof-of-concept that lipid-HDO is a promising gene-silencing technology for stroke treatment in the hyperacute stage.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Ratones , Animales , Oligonucleótidos , ARN , Células Endoteliales/metabolismo , Ligandos , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Encéfalo/metabolismo , Isquemia , ADN , Lípidos
10.
Org Biomol Chem ; 20(11): 2282-2292, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35234775

RESUMEN

Diethyl mesoxalate (DEMO) exhibits high electrophilicity and accepts the nucleophilic addition of a less nucleophilic acid amide to afford N,O-hemiacetal. However, our research showed that elimination of the amide moiety proceeded more easily than dehydration upon treatment with a base. This problem was overcome by reacting DEMO with an acid amide in the presence of acetic anhydride to efficiently obtain N,O-acetal. Acetic acid was eliminated leading to the formation of N-acylimine in situ upon treatment with the base. N-Acylimine is also electrophilic, accepting the second nucleophilic addition by pyrrole or indole to form α,α-disubstituted malonates. Subsequent hydrolysis followed by decarboxylation resulted in (α-indolyl-α-acylamino)acetic acid formation; homologs of tryptophan. Through this process, DEMO serves as a synthetic equivalent of α,α-dicationic acetic acid to facilitate nucleophilic introduction of the two substituents.

11.
Nat Biotechnol ; 39(12): 1529-1536, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385691

RESUMEN

Achieving regulation of endogenous gene expression in the central nervous system (CNS) with antisense oligonucleotides (ASOs) administered systemically would facilitate the development of ASO-based therapies for neurological diseases. We demonstrate that DNA/RNA heteroduplex oligonucleotides (HDOs) conjugated to cholesterol or α-tocopherol at the 5' end of the RNA strand reach the CNS after subcutaneous or intravenous administration in mice and rats. The HDOs distribute throughout the brain, spinal cord and peripheral tissues and suppress the expression of four target genes by up to 90% in the CNS, whereas single-stranded ASOs conjugated to cholesterol have limited activity. Gene knockdown was observed in major CNS cell types and was greatest in neurons and microglial cells. Side effects, such as thrombocytopenia and focal brain necrosis, were limited by using subcutaneous delivery or by dividing intravenous injections. By crossing the blood-brain barrier more effectively, cholesterol-conjugated HDOs may overcome the limited efficacy of ASOs targeting the CNS without requiring intrathecal administration.


Asunto(s)
Barrera Hematoencefálica , ARN , Animales , Sistema Nervioso Central/metabolismo , Colesterol/metabolismo , ADN/metabolismo , Ratones , Oligonucleótidos/metabolismo , Oligonucleótidos Antisentido/uso terapéutico , ARN/metabolismo , Ratas , Roedores
12.
Sci Rep ; 11(1): 14237, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244578

RESUMEN

Brain endothelial cells (BECs) are involved in the pathogenesis of ischemic stroke. Recently, several microRNAs (miRNAs) in BECs were reported to regulate the endothelial function in ischemic brain. Therefore, modulation of miRNAs in BECs by a therapeutic oligonucleotide to inhibit miRNA (antimiR) could be a useful strategy for treating ischemic stroke. However, few attempts have been made to achieve this strategy via systemic route due to lack of efficient delivery-method toward BECs. Here, we have developed a new technology for delivering an antimiR into BECs and silencing miRNAs in BECs, using a mouse ischemic stroke model. We designed a heteroduplex oligonucleotide, comprising an antimiR against miRNA-126 (miR-126) known as the endothelial-specific miRNA and its complementary RNA, conjugated to α-tocopherol as a delivery ligand (Toc-HDO targeting miR-126). Intravenous administration of Toc-HDO targeting miR-126 remarkably suppressed miR-126 expression in ischemic brain of the model mice. In addition, we showed that Toc-HDO targeting miR-126 was delivered into BECs more efficiently than the parent antimiR in ischemic brain, and that it was delivered more effectively in ischemic brain than non-ischemic brain of this model mice. Our study highlights the potential of this technology as a new clinical therapeutic option for ischemic stroke.


Asunto(s)
MicroARNs/genética , Oligonucleótidos/química , Oligonucleótidos/uso terapéutico , alfa-Tocoferol/química , Animales , Encéfalo/metabolismo , Línea Celular , Inmunohistoquímica , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Mol Ther Nucleic Acids ; 23: 1360-1370, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33738132

RESUMEN

DNA/RNA heteroduplex oligonucleotide (HDO), composed of DNA/locked nucleic acid (LNA) antisense oligonucleotide (ASO) and complementary RNA, is a next-generation antisense therapeutic agent. HDO is superior to the parental ASO in delivering to target tissues, and it exerts a more potent gene-silencing effect. In this study, we aimed to elucidate the intracellular trafficking mechanism of HDO-dependent gene silencing. HDO was more preferably transferred to the nucleus after transfection compared to the parental ASO. To determine when and where HDO is separated into the antisense strand (AS) and complementary strand (CS), we performed live-cell time-lapse imaging and fluorescence resonance energy transfer (FRET) assays. These assays demonstrated that HDO had a different intracellular trafficking mechanism than ASO. After endocytosis, HDO was separated in the early endosomes, and both AS and CS were released into the cytosol. AS was more efficiently transported to the nucleus than CS. Separation, endosomal release, and initiation of nuclear transport were a series of time-locked events occurring at a median of 30 s. CS cleavage was associated with efficient nuclear distribution and gene silencing in the nucleus. Understanding the unique intracellular silencing mechanisms of HDO will help us design more efficient drugs and might also provide insight into innate DNA/RNA cellular biology.

14.
Mol Ther ; 29(2): 838-847, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33290725

RESUMEN

We recently reported the antisense properties of a DNA/RNA heteroduplex oligonucleotide consisting of a phosphorothioate DNA-gapmer antisense oligonucleotide (ASO) strand and its complementary phosphodiester RNA/phosphorothioate 2'-O-methyl RNA strand. When α-tocopherol was conjugated with the complementary strand, the heteroduplex oligonucleotide silenced the target RNA more efficiently in vivo than did the parent single-stranded ASO. In this study, we designed a new type of the heteroduplex oligonucleotide, in which the RNA portion of the complementary strand was replaced with phosphodiester DNA, yielding an ASO/DNA double-stranded structure. The ASO/DNA heteroduplex oligonucleotide showed similar activity and liver accumulation as did the original ASO/RNA design. Structure-activity relationship studies of the complementary DNA showed that optimal increases in the potency and the accumulation were seen when the flanks of the phosphodiester DNA complement were protected using 2'-O-methyl RNA and phosphorothioate modifications. Furthermore, evaluation of the degradation kinetics of the complementary strands revealed that the DNA-complementary strand as well as the RNA strand were completely cleaved in vivo. Our results expand the repertoire of chemical modifications that can be used with the heteroduplex oligonucleotide technology, providing greater design flexibility for future therapeutic applications.


Asunto(s)
ADN/genética , Regulación de la Expresión Génica , Técnicas de Transferencia de Gen , Oligodesoxirribonucleótidos/genética , Células Cultivadas , ADN/administración & dosificación , Silenciador del Gen , Oligodesoxirribonucleótidos/administración & dosificación , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética
15.
Chemistry ; 27(7): 2427-2438, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33280173

RESUMEN

Artificial nucleic acids are widely used in various technologies, such as nucleic acid therapeutics and DNA nanotechnologies requiring excellent duplex-forming abilities and enhanced nuclease resistance. 2'-O,4'-C-Methylene-bridged nucleic acid/locked nucleic acid (2',4'-BNA/LNA) with 1,3-diaza-2-oxophenoxazine (BNAP (BH )) was previously reported. Herein, a novel BH analogue, 2',4'-BNA/LNA with 9-(2-aminoethoxy)-1,3-diaza-2-oxophenoxazine (G-clamp), named BNAP-AEO (BAEO ), was designed. The BAEO nucleoside was successfully synthesized and incorporated into oligodeoxynucleotides (ODNs). ODNs containing BAEO possessed up to 104 -, 152-, and 11-fold higher binding affinities for complementary (c) RNA than those of ODNs containing 2'-deoxycytidine (C), 2',4'-BNA/LNA with 5-methylcytosine (L), or 2'-deoxyribonucleoside with G-clamp (PAEO ), respectively. Moreover, duplexes formed by ODN bearing BAEO with cDNA and cRNA were thermally stable, even under molecular crowding conditions induced by the addition of polyethylene glycol. Furthermore, ODN bearing BAEO was more resistant to 3'-exonuclease than ODNs with phosphorothioate linkages.


Asunto(s)
Exonucleasas/metabolismo , Ácidos Nucleicos/química , Oligonucleótidos/química , Oxazinas/química , Hidrocarburos Aromáticos con Puentes , Ácidos Nucleicos/metabolismo , Oligonucleótidos/metabolismo , Oxazinas/metabolismo , ARN/química
16.
Methods Mol Biol ; 2176: 113-119, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32865786

RESUMEN

Heteroduplex oligonucleotides (HDOs) were a novel type of nucleic acid drugs based on an antisense oligonucleotide (ASO) strand and its complementary RNA (cRNA ) strand. HDOs were originally designed to improve the properties of RNase H-dependent ASOs and we reported in our first paper that HDOs conjugated with an α-tocopherol ligand (Toc-HDO ) based on a gapmer ASO showed 20 times higher silencing effect to liver apolipoprotein B (apoB) mRNA in vivo than the parent ASO. Thereafter the HDO strategy was found to be also effective for improving the properties of ASOs modulating blood-brain barrier function and ASO antimiRs which are RNase H-independent ASOs. Therefore, the HDO strategy has been shown to be versatile technology platform to develop effective nucleic acid drugs.


Asunto(s)
Silenciador del Gen/efectos de los fármacos , Ácidos Nucleicos Heterodúplex/farmacología , Oligonucleótidos Antisentido/farmacología , ARN/farmacología , Animales , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Terapia Genética/métodos , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Ácidos Nucleicos Heterodúplex/química , Ácidos Nucleicos Heterodúplex/uso terapéutico , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/uso terapéutico , ARN/química , ARN/uso terapéutico
17.
FEBS Lett ; 594(9): 1413-1423, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31990989

RESUMEN

Gapmer-type antisense oligonucleotides have not yet been approved for the treatment of central nervous system diseases, whereas steric-blocking-type antisense oligonucleotides have been well-developed for clinical use. We here characterize a new type of double-stranded oligonucleotides, overhanging-duplex oligonucleotides, which are composed of the parent gapmer and its extended complementary RNA. By intracerebroventricular injection, overhanging oligonucleotides show greater silencing potency with more efficient delivery into mouse brains than the parent single-stranded gapmer. Structure-activity relationship analyses reveal that the potency enhancement requires 13-mer or more overhanging oligonucleotides with a phosphorothioate backbone. Overhanging oligonucleotides provide a new platform of therapeutic oligonucleotides for gene modulation in the central nervous system.


Asunto(s)
Encéfalo/fisiología , Silenciador del Gen/fisiología , Ácidos Nucleicos Heterodúplex/administración & dosificación , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Femenino , Regulación de la Expresión Génica , Inyecciones Intraventriculares , Ratones Endogámicos ICR , Ácidos Nucleicos Heterodúplex/líquido cefalorraquídeo , Ácidos Nucleicos Heterodúplex/química , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/líquido cefalorraquídeo , Oligonucleótidos Antisentido/química , Proteínas tau/genética
18.
Nucleic Acids Res ; 47(14): 7321-7332, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31214713

RESUMEN

AntimiR is an antisense oligonucleotide that has been developed to silence microRNA (miRNA) for the treatment of intractable diseases. Enhancement of its in vivo efficacy and improvement of its toxicity are highly desirable but remain challenging. We here design heteroduplex oligonucleotide (HDO)-antimiR as a new technology comprising an antimiR and its complementary RNA. HDO-antimiR binds targeted miRNA in vivo more efficiently by 12-fold than the parent single-stranded antimiR. HDO-antimiR also produced enhanced phenotypic effects in mice with upregulated expression of miRNA-targeting messenger RNAs. In addition, we demonstrated that the enhanced potency of HDO-antimiR was not explained by its bio-stability or delivery to the targeted cell, but reflected an improved intracellular potency. Our findings provide new insights into biology of miRNA silencing by double-stranded oligonucleotides and support the in vivo potential of this technology based on a new class of for the treatment of miRNA-related diseases.


Asunto(s)
ADN de Cadena Simple/genética , Silenciador del Gen , MicroARNs/genética , Ácidos Nucleicos Heterodúplex/genética , Oligonucleótidos Antisentido/genética , Animales , Northern Blotting , ADN de Cadena Simple/metabolismo , Femenino , Regulación de la Expresión Génica , Riñón/metabolismo , Hígado/metabolismo , Ratones Endogámicos ICR , MicroARNs/metabolismo , Ácidos Nucleicos Heterodúplex/metabolismo , Ácidos Nucleicos Heterodúplex/farmacocinética , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Antisentido/farmacocinética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Bazo/metabolismo
19.
Intern Med ; 57(23): 3451-3458, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29984771

RESUMEN

Progressive encephalomyelitis with rigidity and myoclonus (PERM) is an autoimmune disorder involving the brainstem and spinal cord and is sometimes associated with thymoma. We encountered a 75-year-old woman with typical PERM features, glycine receptor antibody, and thymoma. Her neurologic symptoms improved after thymectomy, but she unexpectedly developed anasarca with massive pleural effusions and hypoalbuminemia and finally succumbed to death. The autopsy showed edema and mononuclear infiltration in the pleura but no neuropathological findings typical of PERM. Effective treatment of PERM can reverse the neuropathological signs of encephalomyelitis. The autoimmune nature of anasarca is possible but not proven.


Asunto(s)
Enfermedades Autoinmunes/complicaciones , Edema/etiología , Encefalomielitis/complicaciones , Rigidez Muscular/complicaciones , Mioclonía/complicaciones , Timectomía/efectos adversos , Timoma/complicaciones , Timoma/cirugía , Neoplasias del Timo/complicaciones , Neoplasias del Timo/cirugía , Anciano , Autoanticuerpos/sangre , Enfermedades Autoinmunes/cirugía , Autopsia , Edema/inmunología , Encefalomielitis/cirugía , Resultado Fatal , Femenino , Humanos , Rigidez Muscular/cirugía , Mioclonía/cirugía , Derrame Pleural/etiología , Derrame Pleural/inmunología , Complicaciones Posoperatorias , Receptores de Glicina/inmunología , Albúmina Sérica/análisis
20.
Drug Discov Ther ; 10(5): 256-262, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27890899

RESUMEN

Therapeutic oligonucleotides are promising technologies. Nevertheless, improvement of their efficacy is an important issue. Introducing this drug delivery system (DDS) makes for a great enhancement for delivery of oligonucleotides to targeted tissue or cells. The strategy of DDS for therapeutic oligonucleotides is divided into four categories, A) single piece of oligonucleotide, B) oligonucleotide-ligand conjugate, C) oligonucleotide-polymer conjugate, and D) nanoparticle. In this review we will describe those basic concepts, especially for the technology of conjugating ligand. In addition, we developed a new technology, heteroduplex oligonucleotide (HDO), binding ligand-molecule to antisense oligonucleotide indirectly. We also outline α-tocopherol (a natural isomer of vitamin E) conjugated HDO.


Asunto(s)
Sistemas de Liberación de Medicamentos , Oligonucleótidos/administración & dosificación , Humanos , Oligonucleótidos Antisentido/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Tocoferoles/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA