Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 537
Filtrar
1.
Heliyon ; 10(14): e34176, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39104480

RESUMEN

Objectives: This study aimed to summarize the existing literature on risk factors for arrhythmias after chemotherapy in cancer patients. To provide reliable evidence for treating arrhythmias after chemotherapy in oncology patients by assessing multiple biasing factors in the literature and quantifying the risk factors. Methods: The risk factors for arrhythmia following tumor chemotherapy were systematically collected from various reputable databases, including PubMed, Cochrane Library, MEDLINE, EMBASE, and multiple Chinese databases, covering the period from inception to May 2023. Two independent reviewers performed rigorous article screening, data extraction, and assessment of research quality. Data analysis was conducted using Review Manager 5.4 software, ensuring a standardized and robust approach to evaluate the gathered evidence. Results: The analysis of chemotherapy-induced arrhythmias included 16 articles, encompassing 14,785 cancer patients. Among the patients, 3295 belonged to the arrhythmia group, while 11,490 were in the non-arrhythmia group. These studies identified 12 significant risk factors associated with arrhythmias following chemotherapy in cancer patients. The findings of the analysis are as follows. General patient characteristics: The incidence of post-chemotherapy arrhythmias was 14.33 times higher in oncology patients aged ≥60 years compared to patients <60 years of age [OR = 14.33, 95%CI (8.51, 24.13), P<0.00001]. Patients with a smoking history exhibited a 1.67-fold higher risk of arrhythmia after chemotherapy [OR = 1.67, 95%CI (1.24, 2.25), P = 0.0007]. However, there was no significant correlation between gender and body mass index (BMI) with arrhythmia after chemotherapy in oncology patients (P = 0.52; P = 0.19). Disease-related factors: Patients with a history of hypertension, diabetes, and cardiovascular disease had a 1.93-fold, 1.30-fold, and 1.76-fold increased risk of arrhythmia after chemotherapy, respectively [OR = 1.93, 95%CI (1.66, 2.24), P<0.00001; OR = 1.30, 95%CI (1.10, 2.52), P = 0.002; OR = 1.76, 95%CI (1.51, 2.05), P<0.00001]. Additionally, the incidence of arrhythmia increased 1.97 times in patients with electrolyte and acid-base balance disorders following chemotherapy [OR = 1.97, 95%CI (1.41, 2.76), P<0.00001]. Chemotherapy-related factors: Seven articles examined the association between chemotherapy drugs and post-chemotherapy arrhythmias. The results indicated that oncology patients were 3.03 times more likely to develop arrhythmias with chemotherapy drugs compared to non-chemotherapy drugs [OR = 3.03, 95%CI (2.59, 3.54), P<0.00001]. Notably, anthracyclines and fluorouracil chemotherapy demonstrated a 2.98-fold and 3.35-fold increased risk of arrhythmia after chemotherapy, respectively [OR = 2.98, 95%CI (2.51, 3.03), P<0.00001; OR = 3.35, 95%CI (2.20, 5.10), P<0.00001]. The risk of arrhythmia after chemotherapy was 1.72 times higher in patients with chemotherapy cycles longer than 4 weeks than those with cycles shorter than 4 weeks [OR = 1.72, 95%CI (1.30, 2.28), P = 0.0001]. Conclusion: The occurrence of arrhythmia after chemotherapy in cancer patients was significantly associated with the patient's age, history of smoking, history of hypertension, history of diabetes, history of cardiovascular disease, chemotherapy drug use, and cycle. However, further high-quality evidence is needed to support these results.

2.
Sci Rep ; 14(1): 17857, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090207

RESUMEN

Members of the Metal Tolerance Protein (MTP) family are critical in mediating the transport and tolerance of divalent metal cations. Despite their significance, the understanding of MTP genes in mustard (Brassica juncea) remains limited, especially regarding their response to heavy metal (HM) stress. In our study, we identified MTP gene sets in Brassica rapa (17 genes), Brassica nigra (18 genes), and B. juncea (33 genes) using the HMMER (Cation_efflux; PF01545) and BLAST analysis. For the 33 BjMTPs, a comprehensive bioinformatics analysis covering the physicochemical properties, phylogenetic relationships, conserved motifs, protein structures, collinearity, spatiotemporal RNA-seq expression, GO enrichment, and expression profiling under six HM stresses (Mn2+, Fe2+, Zn2+, Cd2+, Sb3+, and Pb2+) were carried out. According to the findings of physicochemical characteristics, phylogenetic tree, and collinearity, the allopolyploid B. juncea's MTP genes were inherited from its progenitors, B. rapa and B. nigra, with minimal gene loss during polyploidization. Members of the BjMTP family exhibited conserved motifs, promoter elements, and expression patterns across subgroups, consistent with the seven evolutionary branches (G1, G4-G9, and G12) of the MTPs. Further, spatiotemporal expression profiling under HM stresses successfully identified specific genes and crucial cis-regulatory elements associated with the response of BjMTPs to HM stresses. These findings may contribute to the genetic improvement of B. juncea for enhanced HM tolerance, facilitating the remediation of HM-contaminated areas.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Metales Pesados , Planta de la Mostaza , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Planta de la Mostaza/genética , Metales Pesados/toxicidad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Perfilación de la Expresión Génica , Biología Computacional/métodos
3.
Angew Chem Int Ed Engl ; : e202410803, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180126

RESUMEN

The integration of pyroptosis and ferroptosis hybrid cell death induction to augment immune activation represents a promising avenue for anti-tumor treatment, but there is a lack of research. Herein, we developed two iridium(III)-triphenylamine photosensitizers, IrC and IrF, with the capacity to disrupt redox balance and induce photo-driven cascade damage to DNA and Kelch-like ECH-associated protein 1 (KEAP1). The activation of the absent in melanoma 2 (AIM2)-related cytoplasmic nucleic acid-sensing pathway, triggered by damaged DNA, leads to the induction of gasdermin D (GSDMD)-mediated pyroptosis. Simultaneously, iron homeostasis, regulated by the KEAP1/nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase 1 (HO-1) pathway, serves as a pivotal bridge, facilitating not only the induction of gasdermin E (GSDME)-mediated non-canonical pyroptosis, but also ferroptosis in synergy with glutathione peroxidase 4 (GPX4) depletion. The collaborative action of pyroptosis and ferroptosis generates a synergistic effect that elicits immunogenic cell death, stimulates a robust immune response and effectively inhibits tumor growth in vivo. Our work introduces the first metal-based small molecule dual-inducers of pyroptosis and ferroptosis for potent cancer immunotherapy, and highlights the significance of iron homeostasis as a vital hub connecting synergistic effects of pyroptosis and ferroptosis.

4.
Sci Adv ; 10(34): eadp0345, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39178266

RESUMEN

The regulation of leaf senescence and disease resistance plays a crucial role in determining rice grain yield and quality, which are important to meet the ever-increasing food demands of the world. Here, we identified an atypical Dof transcriptional factor OsDes1 that contributes to the stay-green phenotype, grain yield, and disease resistance in rice. The expression level of OsDes1 is positively associated with stay-green in natural variations of japonica rice, suggesting that OsDes1 would be alternatively used in breeding programs. Mechanistically, OsDes1 targets the promoter of the Rieske FeS protein gene OsPetC to activate its expression and interacts with OsPetC to protect against its degradation, thus promoting stay-green and ultimately improving the grain yield. OsDes1 also binds to the promoter region of defense-related genes, such as OsPR1b, and activates their expression, leading to enhanced disease resistance. These findings offer a potential strategy for breeding rice to enhance grain yield and disease resistance.


Asunto(s)
Resistencia a la Enfermedad , Grano Comestible , Regulación de la Expresión Génica de las Plantas , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Factores de Transcripción , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Grano Comestible/genética , Enfermedades de las Plantas/genética , Regiones Promotoras Genéticas , Fenotipo
5.
Nano Lett ; 24(33): 10372-10379, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39105796

RESUMEN

Charge-transfer mechanisms in adaptive multicomponent solutions at liquid-solid interfaces with triboelectric probes are crucial for understanding chemistry dynamics. However, liquid-solid charge transfer becomes unpredictable, due to the components or interactions in solutions, restricting its potential application for precise monitoring of liquid environments. This study utilizes triboelectric probes to investigate the charge transfer of chemicals, applying this approach to real-time coolant state monitoring. Analysis of electrical signal dynamics induced by ethylene glycol and its oxidation byproduct, oxalic acid, in ethylene glycol solutions reveals that hydrogen bond and ion adsorption diminishes the efficiency of electron transfer at the liquid-solid interface. These findings promote the engineering of the triboelectric probe that enhances coolant quality with remarkable sensitivity (detection limit: 0.0001%) and a broad freezing point operational range (0 to -49 °C). This work advances the precise control of the charge dynamics and demonstrates the potential of triboelectric probes for interdisciplinary applications.

6.
World J Oncol ; 15(4): 662-674, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38993257

RESUMEN

Background: The clinical role of claudin 8 (CLDN8) in kidney renal clear cell carcinoma (KIRC) remains unclarified. Herein, the expression level and potential molecular mechanisms of CLDN8 underlying KIRC were determined. Methods: High-throughput datasets of KIRC were collected from GEO, ArrayExpress, SRA, and TCGA databases to determine the mRNA expression level of the CLDN8. In-house tissue microarrays and immunochemistry were performed to examine CLDN8 protein expression. A summary receiver operating characteristic curve (SROC) and standardized mean difference (SMD) forest plot were generated using Stata v16.0. Single-cell analysis was conducted to further prove the expression level of CLDN8. A clustered regularly interspaced short palindromic repeats knockout screen analysis was executed to assess the growth impact of CLDN8. Functional enrichment analysis was conducted using the Metascape database. Additionally, single-sample gene set enrichment analysis was implied to explore immune cell infiltration in KIRC. Results: A total of 17 mRNA datasets comprising 1,060 KIRC samples and 452 non-cancerous control samples were included in this study. Additionally, 105 KIRC and 16 non-KIRC tissues were analyzed using in-house immunohistochemistry. The combined SMD was -5.25 (95% confidence interval (CI): -6.13 to -4.37), and CLDN8 downregulation yielded an SROC area under the curve (AUC) close to 1.00 (95% CI: 0.99 - 1.00). CLDN8 downregulation was also confirmed at the single-cell level. Knocking out CLDN8 stimulated KIRC cell proliferation. Lower CLDN8 expression was correlated with worse overall survival of KIRC patients (hazard ratio of CLDN8 downregulation = 1.69, 95% CI: 1.2 - 2.4). Functional pathways associated with CLDN8 co-expressed genes were centered on carbon metabolism obstruction, with key hub genes ACADM, ACO2, NDUFS1, PDHB, SDHD, SUCLA2, SUCLG1, and SUCLG2. Conclusions: CLDN8 is downregulated in KIRC and is considered a potential tumor suppressor. CLDN8 deficiency may promote the initiation and progression of KIRC, potentially in conjunction with metabolic dysfunction.

7.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2841-2852, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041143

RESUMEN

The discipline development is the pillar for the development of traditional Chinese medicine( TCM). The academic progress in TCM is the commanding height of the discipline development of TCM. To lead and promote the development and academic progress of TCM, the China Association of Chinese Medicine has summarized the Top Ten Academic Achievements in Traditional Chinese Medicine during 2020-2022, the Major Scientific Problems, Engineering Technical Problems, and Industrial Technical Problems in Traditional Chinese Medicine during 2019-2023, and the Remarkable Research Achievements of Traditional Chinese Medicine during 2012-2022. Based on the above research reports and the research achievements awarded the national science and technology prizes in TCM in the last 20 years and according to the current situation and layout of TCM discipline development, this paper reviews the major research achievements of TCM in the last two decades and the latest research progress in TCM during 2020-2023. The major scientific, engineering technical, and industrial technical problems in TCM are analyzed and the emerging trends of TCM are prospected in accordance with the development laws and characteristics of TCM. This review provides new ideas and reference for the high-quality development of TCM in the new era.


Asunto(s)
Medicina Tradicional China , Medicina Tradicional China/tendencias , China , Humanos , Medicamentos Herbarios Chinos
8.
Chin J Integr Med ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958885

RESUMEN

Coronavirus disease 2019 (COVID-19) is an acute infectious respiratory disease that has been prevalent since December 2019. Chinese medicine (CM) has demonstrated its unique advantages in the fight against COVID-19 in the areas of disease prevention, improvement of clinical symptoms, and control of disease progression. This review summarized the relevant material components of CM in the treatment of COVID-19 by searching the relevant literature and reports on CM in the treatment of COVID-19 and combining with the physiological and pathological characteristics of the novel coronavirus. On the basis of sorting out experimental methods in vivo and in vitro, the mechanism of herb action was further clarified in terms of inhibiting virus invasion and replication and improving related complications. The aim of the article is to explore the strengths and characteristics of CM in the treatment of COVID-19, and to provide a basis for the research and scientific, standardized treatment of COVID-19 with CM.

9.
Bioorg Med Chem ; 111: 117856, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39074413

RESUMEN

Mitochondrial G-quadruplexes are components that are potentially involved in regulating mitochondrial function and play crucial roles in the replication and transcription of mitochondrial genes. Consequently, it is imperative to develop probes that can detect mitochondrial G-quadruplexes to understand their functions and mechanisms. In this study, a triphenylamine fluorescent probe, TPPE, which has excellent cytocompatibility and does not affect the natural state of G-quadruplexes, was designed and demonstrated to localize primarily to the mitochondria. Owing to the unique binding mode between TPPE and G-quadruplexes, TPPE was able to distinguish G-quadruplexes from other substances due to the higher fluorescence lifetime and quantum yield. On the basis of the photon counts determined via fluorescence lifetime imaging microscopy, we analyzed the differences in the numbers of mitochondrial G-quadruplexes in various cell lines. We observed reductions in the number of mitochondrial G-quadruplexes during apoptosis, ferroptosis and glycolysis inhibition. This study shows the great potential of using TPPE to track and analyze mitochondrial G-quadruplexes and presents a novel perspective in the development of probes to detect mitochondrial G-quadruplexes in live cells.


Asunto(s)
Colorantes Fluorescentes , G-Cuádruplex , Microscopía Fluorescente , Mitocondrias , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Mitocondrias/metabolismo , Estructura Molecular , Imagen Óptica , Teoría Cuántica
10.
World J Clin Cases ; 12(21): 4527-4535, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39070839

RESUMEN

BACKGROUND: Psychological intervention nursing (PIN) has been considered to have a curative effect on cesarean section (CS) postoperative recovery. However, the therapeutic mechanisms remain obscure. AIM: To explore the effects of PIN combined with acupressure massage on CS postoperative recovery. METHODS: A retrospective study was conducted on 150 pregnant women admitted to an obstetrics department between January 2020 and January 2023. The control group (CG) received acupressure therapy (n = 73), and the intervention group (IG) received acupressure therapy and PIN therapy (n = 77). Postoperative recovery time was assessed by anal-exhausting, defecation, bed activity, breastfeeding, and hospital stay times. Adverse effects, including infection, bleeding, limb numbness, intrauterine hematoma, urinary retention, and venous thromboembolism, were recorded. the pain visual analogue scale (VAS) was used to evaluate the degree of pain. Anxiety and depression status were qualitatively assessed using the self-rating anxiety scale (SAS), self-rating depression scale (SDS), and Edinburgh postpartum depression scale (EPDS). The Pittsburgh sleep quality index (PSQI) was used to compare sleep quality between the groups. RESULTS: The baseline data and SAS, SDS, EPDS, and PSQI scores did not significantly differ before CS (P > 0.05) and neither did complication rates between the two groups after CS (P > 0.05). However, anal-exhausting, defecation, waking up, breastfeeding, and hospitalization times were significantly shorter for participants in the IG than those for participants in the CG (P < 0.05). The VAS, SAS, SDS, EPDS, and PSQI scores of the IG were significantly lower than those of the CG (P < 0.05). CONCLUSION: PIN, combined with acupressure massage, effectively promotes maternal recovery, reduces post-CS pain, and improves postoperative negative emotions and sleeping quality.

11.
ACS Appl Mater Interfaces ; 16(31): 41421-41434, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38994719

RESUMEN

Corrosion protection technology plays a crucial role in preserving infrastructure, ensuring safety and reliability, and promoting long-term sustainability. In this study, we combined experiments and various analyses to investigate the mechanism of corrosion occurring on the epoxy-based anticorrosive coating containing the additive of two-dimensional (2D) and water-stable zirconium-based metal-organic frameworks (Zr-MOFs). By using benzoic acid as the modulator for the growth of the MOF, a 2D MOF constructed from hexazirconium clusters and BTB linkers (BTB = 1,3,5-tri(4-carboxyphenyl)benzene) with coordinated benzoate (BA-ZrBTB) can be synthesized. By coating the BA-ZrBTB/epoxy composite film (BA-ZrBTB/EP) on the surface of cold-rolled steel (CRS), we found the lowest coating roughness (RMS) of BA-ZrBTB/EP is 2.83 nm with the highest water contact angle as 99.8°, which represents the hydrophobic coating surface. Notably, the corrosion rate of the BA-ZrBTB/EP coating is 2.28 × 10-3 mpy, which is 4 orders of magnitude lower than that of the CRS substrate. Moreover, the energy barrier for oxygen diffusion through BA-ZrBTB/EP coating is larger than that for epoxy coating (EP), indicating improved oxygen resistance for adding 2D Zr-MOFs as the additive. These results underscore the high efficiency and potential of BA-ZrBTB as a highly promising agent for corrosion prevention in various commercial applications. Furthermore, this study represents the first instance of applying 2D Zr-MOF materials in anticorrosion applications, opening up new possibilities for advanced corrosion-resistant coatings.

12.
Chem Sci ; 15(25): 9756-9774, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38939132

RESUMEN

G-quadruplexes (G4s) are atypical nucleic acid structures involved in basic human biological processes and are regulated by small molecules. To date, pyridostatin and its derivatives [e.g., PyPDS (4-(2-aminoethoxy)-N 2,N 6-bis(4-(2-(pyrrolidin-1-yl) ethoxy) quinolin-2-yl) pyridine-2,6-dicarboxamide)] are the most widely used G4-binding small molecules and considered to have the best G4 specificity, which provides a new option for the development of cisplatin-binding DNA. By combining PyPDS with cisplatin and its analogs, we synthesize three platinum complexes, named PyPDSplatins. We found that cisplatin with PyPDS (CP) exhibits stronger specificity for covalent binding to G4 domains even in the presence of large amounts of dsDNA compared with PyPDS either extracellularly or intracellularly. Multiomics analysis reveals that CP can effectively regulate G4 functions, directly damage G4 structures, activate multiple antitumor signaling pathways, including the typical cGAS-STING pathway and AIM2-ASC pathway, trigger a strong immune response and lead to potent antitumor effects. These findings reflect that cisplatin-conjugated specific G4 targeting groups have antitumor mechanisms different from those of classic cisplatin and provide new strategies for the antitumor immunity of metals.

13.
Dalton Trans ; 53(27): 11426-11435, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38904074

RESUMEN

A two-dimensional zirconium-based metal-organic framework (2D Zr-MOF), ZrBTB (BTB = 1,3,5-tri(4-carboxyphenyl)benzene), is used as a platform to simultaneously immobilize terbium ions and europium ions with tunable ratios on its hexa-zirconium nodes by a post-synthetic modification. The crystallinity, morphology, porosity and photoluminescence (PL) properties of the obtained 2D Zr-MOFs with various europium-to-terbium ratios are investigated. With the energy transfer from the excited BTB linker to the installed terbium ions and the energy transfer from terbium ions to europium ions, a low loading of immobilized europium ions and a high loading of surrounding terbium ions in the 2D Zr-MOF result in the optimal PL emission intensities of europium; this phenomenon is not observable for the physical mixture of both terbium-installed ZrBTB and europium-installed ZrBTB. The role of installed terbium ions as efficient mediators for the energy transfer from the excited BTB linker to the installed europium ion is confirmed by quantifying PL quantum yields. As a demonstration, these materials with modulable PL characteristics are applied for the ratiometric detection of D2O in water, with the use of the stable emission from the BTB linker as the reference. With the strong emission of immobilized europium ions and the good dispersity in aqueous solutions, the optimal bimetal-installed ZrBTB, Eu-Tb-ZrBTB(1 : 10), can achieve the sensing performance outperforming those of the terbium-installed ZrBTB, europium-installed ZrBTB and the physical mixture of both.

14.
J Med Chem ; 67(13): 10906-10927, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38913493

RESUMEN

A series of bifunctional compounds have been discovered for their dual functionality as MER/AXL inhibitors and immune modulators. The furanopyrimidine scaffold, renowned for its suitability in kinase inhibitor discovery, offers at least three distinct pharmacophore access points. Insights from molecular modeling studies guided hit-to-lead optimization, which revealed that the 1,3-diketone side chain hybridized with furanopyrimidine scaffold that respectively combined amino-type substituent and 1H-pyrazol-4-yl substituent on the top and bottom of the aryl regions to produce 22 and 33, exhibiting potent antitumor activities in various syngeneic and xenograft models. More importantly, 33 demonstrated remarkable immune-modulating activity by upregulating the expression of total T-cells, cytotoxic CD8+ T-cells, and helper CD4+ T-cells in the spleen. These findings underscored the bifunctional capabilities of 33 (BPR5K230) with excellent oral bioavailability (F = 54.6%), inhibiting both MER and AXL while modulating the tumor microenvironment and highlighting its diverse applicability for further studies to advance its therapeutic potential.


Asunto(s)
Antineoplásicos , Tirosina Quinasa del Receptor Axl , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras , Microambiente Tumoral , Tirosina Quinasa c-Mer , Animales , Microambiente Tumoral/efectos de los fármacos , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Tirosina Quinasa c-Mer/antagonistas & inhibidores , Tirosina Quinasa c-Mer/metabolismo , Ratones , Línea Celular Tumoral , Relación Estructura-Actividad , Descubrimiento de Drogas , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C , Proliferación Celular/efectos de los fármacos
15.
Commun Chem ; 7(1): 108, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734809

RESUMEN

Immobilization of graphene quantum dots (GQDs) on a solid support is crucial to prevent GQDs from aggregation in the form of solid powder and facilitate the separation and recycling of GQDs after use. Herein, spatially dispersed GQDs are post-synthetically coordinated within a two-dimensional (2D) and water-stable zirconium-based metal-organic framework (MOF). Unlike pristine GQDs, the obtained GQDs immobilized on 2D MOF sheets show photoluminescence in both suspension and dry powder. Chemical and photoluminescent stabilities of MOF-immobilized GQDs in water are investigated, and the use of immobilized GQDs in the photoluminescent detection of copper ions is demonstrated. Findings here shed the light on the use of 2D MOFs as a platform to further immobilize GQDs with various sizes and distinct chemical functionalities for a range of applications.

16.
Macromol Rapid Commun ; 45(14): e2400087, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38688322

RESUMEN

The collapse or folding of an individual polymer chain into a nanoscale particle gives rise to single-chain nanoparticles (SCNPs), which share a soft nature with biological protein particles. The precise control of their properties, including morphology, internal structure, size, and deformability, are a long-standing and challenging pursuit. Herein, a new strategy based on amphiphilic alternating copolymers for producing SCNPs with ultrasmall size and uniform structure is presented. SCNPs are obtained by folding the designed alternating copolymer in N,N-dimethylformamide (DMF) and fixing it through a photocatalyzed cycloaddition reaction of anthracene units. Molecular dynamics simulation confirms the solvophilic outer corona and solvophobic inner core structure of SCNPs. Furthermore, by adjusting the length of PEG units, precise control over the mean size of SCNPs is achieved within the range of 2.8 to 3.9 nm. These findings highlight a new synthetic strategy that enables enhanced control over morphology and internal structure while achieving ultrasmall and uniform size for SCNPs.


Asunto(s)
Simulación de Dinámica Molecular , Nanopartículas , Tamaño de la Partícula , Polímeros , Nanopartículas/química , Polímeros/química , Tensoactivos/química , Estructura Molecular , Antracenos/química
17.
Angew Chem Int Ed Engl ; 63(23): e202401979, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38581278

RESUMEN

Spirobisnaphthalenes (SBNs) are a class of highly oxygenated, fungal bisnaphthalenes containing a unique spiroketal bridge, that displayed diverse bioactivities. Among the reported SBNs, palmarumycins are the major type, which are precursors for the other type of SBNs structurally. However, the biosynthesis of SBNs is unclear. In this study, we elucidated the biosynthesis of palmarumycins, using gene disruption, heterologous expression, and substrate feeding experiments. The biosynthetic gene cluster for palmarumycins was identified to be distant from the polyketide synthase gene cluster, and included two cytochrome P450s (PalA and PalB), and one short chain dehydrogenase/reductase (PalC) encoding genes as key structural genes. PalA is an unusual, multifunctional P450 that catalyzes the oxidative dimerization of 1,8-dihydroxynaphthalene to generate the spiroketal linkage and 2,3-epoxy group. Chemical synthesis of key intermediate and in vitro biochemical assays proved that the oxidative dimerization proceeded via a binaphthyl ether. PalB installs the C-5 hydroxy group, widely found in SBNs. PalC catalyzes 1-keto reduction, the reverse 1-dehydrogenation, and 2,3-epoxide reduction. Moreover, an FAD-dependent oxidoreductase, encoded by palD, which locates outside the cluster, functions as a 1-dehydrogenase. These results provided the first genetic and biochemical evidence for the biosynthesis of palmarumycin SBNs.


Asunto(s)
Naftalenos , Compuestos de Espiro , Compuestos de Espiro/metabolismo , Compuestos de Espiro/química , Naftalenos/metabolismo , Naftalenos/química , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Familia de Multigenes , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/química
18.
aBIOTECH ; 5(1): 46-51, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38576430

RESUMEN

Rice yield and disease resistance are two crucial factors in determining the suitability of a gene for agricultural breeding. Decreased grain size1 (DGS1), encoding an RING-type E3 ligase, has been found to have a positive effect on rice yield by regulating rice grain number and 1000-grain weight. However, the role of DGS1 in rice blast resistance is still unknown. In this study, we report that DGS1 enhances disease resistance by improving PTI responses, including stronger ROS burst and MAPK activation, and also increased expression of defense-related genes. Furthermore, DGS1 works in conjunction with ubiquitin conjugating enzyme OsUBC45 as an E2-E3 pair to facilitate the ubiquitin-dependent degradation of OsGSK3 and OsPIP2;1, thereby influencing rice yield and immunity, respectively. Therefore, the DGS1-OsUBC45 module has the potential in facilitating rice agricultural breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-024-00137-9.

19.
Brain Pathol ; : e13261, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602336

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, pathologically characterized by TDP-43 aggregates. Recent evidence has been indicated that phosphorylated TDP-43 (pTDP-43) is present not only in motor neurons but also in muscle tissues. However, it is unclear whether testing pTDP-43 aggregation in muscle tissue would assist in the diagnosis of ALS. We propose three key questions: (i) Is aggregation of pTDP-43 detectable in routine biopsied muscles? (ii) Can detection of pTDP-43 aggregation discriminate between ALS and non-ALS patients? (iii) Can pTDP-43 aggregation be observed in the early stages of ALS? We conducted a diagnostic study comprising 2 groups: an ALS group in which 18 cases underwent muscle biopsy screened from a registered ALS cohort consisting of 802 patients and a non-ALS control group, in which we randomly selected 54 muscle samples from a biospecimen bank of 684 patients. Among the 18 ALS patients, 3 patients carried pathological GGGGCC repeats in the C9ORF72 gene, 2 patients carried SOD1 mutations, and 7 patients were at an early stage with only one body region clinically affected. The pTDP-43 accumulation could be detected in routine biopsied muscles, including biceps brachii, deltoid, tibialis anterior, and quadriceps. Abnormal aggregation of pTDP-43 was present in 94.4% of ALS patients (17/18) compared to 29.6% of non-ALS controls (16/54; p < 0.001). The pTDP-43 aggregates were mainly close to the sarcolemma. Using a semi-quantified pTDP-43 aggregates score, we applied a cut-off value of 3 as a diagnostic biomarker, resulting in a sensitivity of 94.4% and a specificity of 83.3%. Moreover, we observed that accumulation of pTDP-43 occurred in muscle tissues prior to clinical symptoms and electromyographic lesions. Our study provides proof-of-concept for the detection of pTDP-43 accumulation via routine muscle biopsy which may serve as a novel biomarker for diagnosis of ALS.

20.
Sci Data ; 11(1): 380, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615081

RESUMEN

Rice blast caused by Pyricularia oryzae (syn., Magnaporthe oryzae) was one of the most destructive diseases of rice throughout the world. Genome assembly was fundamental to genetic variation identification and critically impacted the understanding of its ability to overcome host resistance. Here, we report a gapless genome assembly of rice blast fungus P. oryzae strain P131 using PacBio, Illumina and high throughput chromatin conformation capture (Hi-C) sequencing data. This assembly contained seven complete chromosomes (43,237,743 bp) and a circular mitochondrial genome (34,866 bp). Approximately 14.31% of this assembly carried repeat sequences, significantly greater than its previous assembled version. This assembly had a 99.9% complement in BUSCO evaluation. A total of 14,982 genes protein-coding genes were predicted. In summary, we assembled the first telomere-to-telomere gapless genome of P. oryzae, which would be a valuable genome resource for future research on the genome evolution and host adaptation.


Asunto(s)
Ascomicetos , Genoma Fúngico , Ascomicetos/genética , Cromatina , Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA