Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36233351

RESUMEN

Erythropoietin (EPO) is a pleiotropic cytokine that classically drives erythropoiesis but can also induce bone loss by decreasing bone formation and increasing resorption. Deletion of the EPO receptor (EPOR) on osteoblasts or B cells partially mitigates the skeletal effects of EPO, thereby implicating a contribution by EPOR on other cell lineages. This study was designed to define the role of monocyte EPOR in EPO-mediated bone loss, by using two mouse lines with conditional deletion of EPOR in the monocytic lineage. Low-dose EPO attenuated the reduction in bone volume (BV/TV) in Cx3cr1Cre EPORf/f female mice (27.05%) compared to controls (39.26%), but the difference was not statistically significant. To validate these findings, we increased the EPO dose in LysMCre model mice, a model more commonly used to target preosteoclasts. There was a significant reduction in both the increase in the proportion of bone marrow preosteoclasts (CD115+) observed following high-dose EPO administration and the resulting bone loss in LysMCre EPORf/f female mice (44.46% reduction in BV/TV) as compared to controls (77.28%), without interference with the erythropoietic activity. Our data suggest that EPOR in the monocytic lineage is at least partially responsible for driving the effect of EPO on bone mass.


Asunto(s)
Eritropoyetina , Receptores de Eritropoyetina , Animales , Eritropoyetina/metabolismo , Eritropoyetina/farmacología , Femenino , Ratones , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo , Transducción de Señal
2.
Nucleic Acids Res ; 48(22): 12804-12816, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33270859

RESUMEN

HK022 coliphage site-specific recombinase Integrase (Int) can catalyze integrative site-specific recombination and recombinase-mediated cassette exchange (RMCE) reactions in mammalian cell cultures. Owing to the promiscuity of the 7 bp overlap sequence in its att sites, active 'attB' sites flanking human deleterious mutations were previously identified that may serve as substrates for RMCE reactions for future potential gene therapy. However, the wild type Int proved inefficient in catalyzing such RMCE reactions. To address this low efficiency, variants of Int were constructed and examined by integrative site-specific recombination and RMCE assays in human cells using native 'attB' sites. As a proof of concept, various Int derivatives have demonstrated successful RMCE reactions using a pair of native 'attB' sites that were inserted as a substrate into the human genome. Moreover, successful RMCE reactions were demonstrated in native locations of the human CTNS and DMD genes whose mutations are responsible for Cystinosis and Duchene Muscular Dystrophy diseases, respectively. This work provides a steppingstone for potential downstream therapeutic applications.


Asunto(s)
Bacteriófago HK022/genética , Terapia Genética , Integrasas/genética , Recombinación Genética/genética , Bacteriófago HK022/enzimología , ADN Nucleotidiltransferasas/genética , Genoma Humano/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA