Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
World J Stem Cells ; 16(2): 114-125, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38455108

RESUMEN

Human pluripotent stem cell (hPSC)-derived kidney organoids share similarities with the fetal kidney. However, the current hPSC-derived kidney organoids have some limitations, including the inability to perform nephrogenesis and lack of a corticomedullary definition, uniform vascular system, and coordinated exit pathway for urinary filtrate. Therefore, further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development, regeneration, disease modeling, and drug screening. In this review, we discussed recent advances in the generation of hPSC-derived kidney organoids, how these organoids contribute to the understanding of human kidney development and research in disease modeling. Additionally, the limitations, future research focus, and applications of hPSC-derived kidney organoids were highlighted.

2.
Emerg Infect Dis ; 29(9): 1780-1788, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37610104

RESUMEN

Anaplasma capra is an emerging tickborne human pathogen initially recognized in China in 2015; it has been reported in ticks and in a wide range of domestic and wild animals worldwide. We describe whole-genome sequences of 2 A. capra strains from metagenomic sequencing of purified erythrocytes from infected goats in China. The genome of A. capra was the smallest among members of the genus Anaplasma. The genomes of the 2 A. capra strains contained comparable G+C content and numbers of pseudogenes with intraerythrocytic Anaplasma species. The 2 A. capra strains had 54 unique genes. The prevalence of A. capra was high among goats in the 2 endemic areas. Phylogenetic analyses revealed that the A. capra strains detected in this study were basically classified into 2 subclusters with those previously detected in Asia. Our findings clarify details of the genomic characteristics of A. capra and shed light on its genetic diversity.


Asunto(s)
Genómica , Cabras , Animales , Humanos , Prevalencia , Filogenia , Anaplasma/genética , China/epidemiología
3.
Nanoscale Res Lett ; 16(1): 146, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34542720

RESUMEN

Due to their excellent mechanical properties and good biocompatibility, titanium alloys have become a popular research topic in the field of medical metal implants. However, the surface of the titanium alloy does not exhibit biological activity, which may cause poor integration between the interface of the titanium implant and the interface of the bone tissue and subsequently may cause the implant to fall off. Therefore, surface biological inertness is one of the problems that titanium alloys must overcome to become an ideal orthopedic implant material. Surface modification can improve the biological properties of titanium, thereby enhancing its osseointegration effect. Copper is an essential trace element for the human body, can promote bone formation and plays an important role in maintaining the physiological structure and function of bone and bone growth and development. In this study, a microporous copper-titanium dioxide coating was prepared on the surface of titanium by microarc oxidation. Based on the evaluation of its surface characteristics, the adhesion, proliferation and differentiation of MC3T3-E1 cells were observed. A titanium rod was implanted into the rabbit femoral condyle, and the integration of the coating and bone tissue was evaluated. Our research results show that the microporous copper-titanium dioxide coating has a nearly three-dimensional porous structure, and copper is incorporated into the coating without changing the structure of the coating. In vitro experiments found that the coating can promote the adhesion, proliferation and differentiation of MC3T3-E1 cells. In vivo experiments further confirmed that the titanium copper-titanium dioxide microporous coating can promote the osseointegration of titanium implants. In conclusion, copper-titanium dioxide microporous coatings can be prepared by microarc oxidation, which can improve the biological activity and biocompatibility of titanium, promote new bone formation and demonstrate good osteoinductive properties. Therefore, the use of this coating in orthopedics has potential clinical application.

4.
J Biomed Nanotechnol ; 17(7): 1435-1447, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34446146

RESUMEN

Titanium (Ti) and its alloys are widely used in bone surgery by virtue of their excellent mechanical properties and good biocompatibility; however, complications such as loosening and sinking have been reported post-implantation. Herein we deposited a copper-cobalt (Cu-Co) co-doped titanium dioxide (TUO) coating on the surface of Ti implants by microarc oxidation. The osteogenic and antimicrobial properties of the coating were evaluated by in vitro experiments, and we also assessed ß-catenin expression levels on different sample surfaces. Our results revealed that the coating promoted the adhesion, proliferation, and differentiation of MG63 osteoblasts, and TUO coating promoted ß-catenin expression; moreover, the proliferation of Staphylococcus aureus was inhibited. To summarize, we report that Cu-Co co-doping can enhance the osteogenic and antibacterial activities of orthopedic Ti implants, leading to potentially improved clinical performance.


Asunto(s)
Cobre , Titanio , Antibacterianos/farmacología , Materiales Biocompatibles Revestidos/farmacología , Cobalto , Cobre/farmacología , Osteoblastos , Osteogénesis , Propiedades de Superficie , Titanio/farmacología
5.
Lupus ; 29(8): 872-883, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32580680

RESUMEN

Mesenchymal stem cells have been applied to treat graft versus host disease as they have immunosuppressive ability and can overcome the major histocompatibility complex-histocompatibility barrier. The potential of allogeneic mesenchymal stem cells in treating systemic lupus erythematosus (SLE) was investigated in this study. MRL/lpr mice which can develop acquired SLE-like phenotypes were selected as an animal model. Mesenchymal stem cells obtained from green fluorescent protein-transgenic ICR mice were infused into MRL/lpr mice at either the early or late stage of disease. The dosage was 1 × 106/mice per infusion. Mice were stratified into six groups including negative controls and those receiving one, two, three, four or five doses at 2-weekly intervals. The phenotypes were monitored regularly. After treatment, the spleen CD3+CD4-CD8- T and CD19+ B cells of two-dose mesenchymal stem cell-treated mice were significantly lower than those of the phosphate-buffered saline control. In terms of reducing the severity of SLE such as hair loss, skin ulcers, proteinuria and anti-dsDNA level, mesenchymal stem cells given at the early stage responded better and mice receiving two doses of mesenchymal stem cells performed better than those receiving either a lower dose (one dose) or higher doses (three, four or five doses). In conclusion, early treatment and an optimal dose of mesenchymal stem cells can effectively suppress the murine SLE model.


Asunto(s)
Lupus Eritematoso Sistémico/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Animales , Linfocitos B/metabolismo , Modelos Animales de Enfermedad , Femenino , Lupus Eritematoso Sistémico/inmunología , Ratones , Ratones Endogámicos ICR , Ratones Endogámicos MRL lpr , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA