Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Anal Bioanal Chem ; 416(7): 1647-1655, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38305859

RESUMEN

Target-based drug discovery technology based on cell membrane targets has gained significant traction and has been steadily advancing. However, current methods still face certain limitations that need to be addressed. One of the challenges is the laborious preparation process of screening materials, which can be time-consuming and resource-intensive. Additionally, there is a potential issue of non-specific adsorption caused by carrier materials, which can result in false-positive results and compromise the accuracy of the screening process. To address these challenges, this paper proposes a target-based cell membrane affinity ultrafiltration technology for active ingredient discovery in natural products. In this technique, the cell membranes of human lung adenocarcinoma epithelial cells (A549) with a high expression of epidermal growth factor receptor (EGFR) were incubated with candidate drugs and then transferred to an ultrafiltration tube. Through centrifugation, components that interacted with EGFR were retained in the ultrafiltration tube as "EGFR-ligand" complex, while the components that did not interact with EGFR were separated. After thorough washing and eluting, the components interacting with EGFR were dissociated and further identified using LC-MS, enabling the discovery of bioactive compounds. Moreover, the target-based cell membrane affinity ultrafiltration technology exhibited commendable binding capacity and selectivity. Ultimately, this technology successfully screened and identified two major components from the Curcumae Rhizoma-Sparganii Rhizoma (CS) herb pair extracts, which were further validated for their potential anti-tumor activity through pharmacological experiments. By eliminating the need for laborious preparation of screening materials and the potential non-specific adsorption caused by carriers, the development of target-based cell membrane affinity ultrafiltration technology provides a simplified approach and method for bioactive compounds discovery in natural sources.


Asunto(s)
Productos Biológicos , Ultrafiltración , Humanos , Ultrafiltración/métodos , Productos Biológicos/farmacología , Tecnología , Receptores ErbB , Membrana Celular
2.
Environ Sci Pollut Res Int ; 30(15): 43886-43900, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36670226

RESUMEN

Due to the high-acidic arsenic-containing wastewater pollution greatly threatening human health and ecological safety, a simple and efficient method for reducing arsenic was proposed in this paper to solve this problem. By using potassium borohydride (KBH4) as a reducing agent, the soluble arsenic was converted into the gaseous arsine (AsH3) or solid arsenic (As0) to achieve the purpose of removing arsenic in wastewater. By exploring the reaction kinetics of the arsenic removal process, it was found that the fast reaction stage (0-2 min) conformed to pseudo-first-order kinetics. The removal rate of arsenic increased to over 73% in 0.5 min, and reaction equilibrium was reached after 30 min. Various influence factors including arsenic valence, aeration, addition method, concentrations of reducing agent, and hydrogen ion (H+) were investigated. The results showed that As(III) was easier to be removed by reduction than As(V), while adding KBH4 in multiples and aeration were both favorable to the removal of arsenic. Increased concentration of KBH4 also enhanced the removal of arsenic. Appropriate H+ concentration contributed to the arsenic removal, but excessive H+ concentration conversely has an inhibitory effect. The maximum removal rate of arsenic was 95.87%, with the maximum removal capacity of 45.50 mg/g. Based on the XRD and SEM-EDS analysis of residue, amorphous arsenic (As0) with a mass ratio of more than 94.52% was generated after the reduction of soluble arsenic. Our study demonstrated that the reaction mechanism of reductive degradation is soluble arsenic with hydrogen radicals (H•) to form arsenic (As0) and arsine (AsH3) (in the molar ratio of 6:1). Although the generated solid arsenic (As0) is convenient for the soluble arsenic removal from wastewater, attention must be paid to the formation of AsH3, and strategies for AsH3 treatment should be considered.


Asunto(s)
Arsénico , Arsenicales , Contaminantes Químicos del Agua , Humanos , Arsénico/análisis , Aguas Residuales , Sustancias Reductoras , Concentración de Iones de Hidrógeno , Protones , Contaminantes Químicos del Agua/análisis , Adsorción , Cinética
3.
Cancers (Basel) ; 14(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36358656

RESUMEN

Many studies reported that long noncoding RNAs (lncRNAs) play a critical role in gastric cancer (GC) metastasis and tumorigenesis. However, the underlying mechanisms of lncRNAs in GC remain unexplored to a great extent. LINC01537 expression level was detected using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Its biological roles in GC were then investigated using functional experiments. In order to investigate the underlying mechanism of LINC01537 in GC, RNA pull-down, RNA immunoprecipitation, and ubiquitination assays were performed. LINC01537 was significantly overexpressed in GC tissues and associated with a poor prognosis. Functional experimental results revealed that LINC01537 promoted the proliferation, invasion, and migration of GC cells. The animal experiments revealed that LINC01537 promoted tumorigenesis and metastasis in vivo. Mechanistically, LINC01537 stabilizes RIPK4 by reducing the binding of RIPK4 to TRIM25 and reducing its ubiquitination degradation, thereby promoting the expression of the NF-κB signaling pathway. According to our findings, the LINC01537-RIPK4-NF-κB axis promoted GC metastasis and tumorigenesis.

4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 30(1): 157-61, 190, 2013 Feb.
Artículo en Chino | MEDLINE | ID: mdl-23488157

RESUMEN

The present study was aimed to use the 3-D cone beam CT (CBCT) as a new method in human bite marks identification which was carried out in experimental pigskin to assess its effectiveness in our laboratory. Bite marks were digital photographed according to American Board of Forensic Odontology (ABFO) guidelines. In this study, the data of the suspect's dental casts were collected by scanning in two ways: one was after plate scanning, in which the comparison overlays were generated by Adobe Photoshop 8.0 software; the other was by CBCT, which generated comparison overlays automatically. The bite marks were blind identified with the two kinds of data of the suspect's dental casts respectively. ROC curve was used to analyze the sensitivity, specificity, and 95% confidence interval. The results showed that CBCT method got a larger area under the ROC curve: 0.784 (SE = 0.074, 95% CI = 0.639-0.929), and got a very high specificity (specificity 98.7%, 95% CI = 94.5%-99.8%). Thus, this study illustrates that the CBCT used in bite mark identification is an effective and accurate tool and has stronger ability to exclude suspects compared with the conventional method, but the comparison process needs further study to enhance its effectiveness in bite mark identification.


Asunto(s)
Mordeduras Humanas/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico/métodos , Odontología Forense/métodos , Imagenología Tridimensional/métodos , Adolescente , Adulto , Procesos de Copia , Dentición , Femenino , Humanos , Masculino , Modelos Dentales , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA