Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Front Pharmacol ; 14: 1295422, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38149051

RESUMEN

Introduction: The majority of individuals diagnosed with advanced colorectal cancer (CRC) will ultimately acquire resistance to 5-FU treatment. An increasing amount of evidence indicates that aerobic glycolysis performs a significant function in the progression and resistance of CRC. Nevertheless, the fundamental mechanisms remain to be fully understood. Methods: Proteomic analysis of 5-FU resistant CRC cells was implemented to identify and determine potential difference expression protein. Results: These proteins may exhibit resistance mechanisms that are potentially linked to the process of aerobic glycolysis. Herein, we found that nucleolar protein 58 (NOP58) has been overexpressed within two 5-FU resistant CRC cells, 116-5FuR and Lovo-5FuR. Meanwhile, the glycolysis rate of drug-resistant cancer cells has increased. NOP58 knockdown decreased glycolysis and enhanced the sensitivity of 116-5FuR and Lovo-5FuR cells to 5FU. Conclusion: The proteomic analysis of chemoresistance identifies a new target involved in the cellular adaption to 5-FU and therefore highlights a possible new therapeutic strategy to overcome this resistance.

2.
Chem Commun (Camb) ; 52(15): 3115-8, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26794615

RESUMEN

Zeolite Y nanosheets with a micro-meso-macroporous structure were synthesized, and applied in the assembly of a Pd catalyst (Pd/NS-Y) for direct vinylation of thiophenes with high activity and selectivity, as compared to Pd(OAc)2, Pd(NO3)2, and Pd(PPh3)4 catalysts. This feature should be assigned to the highly dispersed Pd(δ+) (δ < 2) species in Pd/NS-Y, which are more active than Pd(2+).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA