Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Chem Soc Rev ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087714

RESUMEN

Fabrics represent a unique platform for seamlessly integrating electronics into everyday experiences. The advancements in functionalizing fabrics at both the single fibre level and within constructed fabrics have fundamentally altered their utility. The revolution in materials, structures, and functionality at the fibre level enables intimate and imperceptible integration, rapidly transforming fibres and fabrics into next-generation wearable devices and systems. In this review, we explore recent scientific and technological breakthroughs in smart fibre-enabled fabrics. We examine common challenges and bottlenecks in fibre materials, physics, chemistry, fabrication strategies, and applications that shape the future of wearable electronics. We propose a closed-loop smart fibre-enabled fabric ecosystem encompassing proactive sensing, interactive communication, data storage and processing, real-time feedback, and energy storage and harvesting, intended to tackle significant challenges in wearable technology. Finally, we envision computing fabrics as sophisticated wearable platforms with system-level attributes for data management, machine learning, artificial intelligence, and closed-loop intelligent networks.

2.
ACS Appl Mater Interfaces ; 16(23): 30421-30429, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38832560

RESUMEN

Electrochromic devices (ECDs), which are capable of modulating optical properties in the visible and long-wave infrared (LWIR) spectra under applied voltage, are of great significance for military camouflage. However, there are a few materials that can modulate dual frequency bands. In addition, the complex and specialized structural design of dual-band ECDs poses significant challenges. Here, we propose a novel approach for a bendable ECD capable of modulating LWIR radiation and displaying multiple colors. Notably, it eliminates the need for a porous electrode or a grid electrode, thereby improving both the response speed and fabrication feasibility. The device employs multiwalled carbon nanotubes (MWCNTs) as both the transparent electrode and the LWIR modulator, polyaniline (PANI) as the electrochromic layer, and ionic liquids (HMIM[TFSI]) as the electrolyte. The ECD is able to reduce its infrared emissivity (Δε = 0.23) in a short time (resulting in a drop in infrared temperature from 50 to 44 °C) within a mere duration of 0.78 ± 0.07 s while changing its color from green to yellow within 3 s when a positive voltage of 4 V is applied. In addition, it exhibits excellent flexibility, even under bending conditions. This simplified structure provides opportunities for applications such as wearable adaptive camouflage and multispectral displays.

3.
Macromol Rapid Commun ; : e2400302, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877645

RESUMEN

Polyamide 6 (PA6) fiber has the advantages of high strength and good wear resistance. However, it is still challenging to effectively load inorganic antibacterial agents into polymer substrates without antimicrobial activity. In this work, graphene oxide is used as a carrier, which is modified with an aminosilane coupling agent (AEAPTMS) to enhance the compatibility and antimicrobial properties of the inorganic material, as well as to improve its thermal stability in a high-temperature melting environment. Cuprous oxide-loaded aminated grapheme (Cu2O-GO-NH2) is constructed by in situ growth method, and further PA6/Cu2O-GO-NH2 fibers are prepared by in situ polymerization. The composite fiber has excellent washing resistance. After 50 times of washing, its bactericidal rates against Bacillus subtilis and Escherichia coli are 98.85% and 99.99%, respectively. In addition, the enhanced compatibility of Cu2O-GO-NH2 with the PA6 matrix improves the orientation and crystallinity of the composite fibers. Compared with PA6/Cu2O-GO fibers, the fracture strength of PA6/Cu2O-GO-NH2 fibers increases from 3.0 to 4.2 cN/dtex when the addition of Cu2O-GO-NH2 is 0.2 wt%. Chemical modification and in situ concepts help to improve the compatibility of inorganic antimicrobial agents with organic polymers, which can be applied to the development of medical textiles.

4.
Nanomicro Lett ; 16(1): 152, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466482

RESUMEN

The thermoregulating function of skin that is capable of maintaining body temperature within a thermostatic state is critical. However, patients suffering from skin damage are struggling with the surrounding scene and situational awareness. Here, we report an interactive self-regulation electronic system by mimicking the human thermos-reception system. The skin-inspired self-adaptive system is composed of two highly sensitive thermistors (thermal-response composite materials), and a low-power temperature control unit (Laser-induced graphene array). The biomimetic skin can realize self-adjusting in the range of 35-42 °C, which is around physiological temperature. This thermoregulation system also contributed to skin barrier formation and wound healing. Across wound models, the treatment group healed ~ 10% more rapidly compared with the control group, and showed reduced inflammation, thus enhancing skin tissue regeneration. The skin-inspired self-adaptive system holds substantial promise for next-generation robotic and medical devices.

5.
Mater Horiz ; 10(12): 5847-5858, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37849349

RESUMEN

Bio-based carbon fibers derived from lignin have gained significant attention due to their diverse and renewable sources, ease of extraction, and low cost. However, the current limitations of low specific surface area and insufficient electrical conductivity hinder the widespread application of lignin-derived carbon fibers (LCFs). In this work, highly conductive and porous LCFs are developed through melt-blowing, pretreatment, and carbonization processes. The effects of the carbonization temperature and heating rate on the structures and properties of the LCFs are systematically investigated. The resultant LCFs exhibit high electrical conductivity (71 400 S m-1) and a large specific surface area (923 m2 g-1). The assembled lithium-ion battery based on the LCF anodes demonstrates a long cycle life of >800 cycles and a high specific capacity of 466 mA h g-1. The findings of this study hold practical significance for promoting the utilization of lignin in the fields of energy storage, adsorption, and beyond.

6.
ACS Appl Mater Interfaces ; 15(36): 42920-42929, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37650731

RESUMEN

In the post-epidemic era, bio-based protective fiber materials with active protective functions are of utmost importance, not only to combat the spread of pathogens but also to reduce the environmental impact of petroleum-based protective materials. Here, efficient antibacterial polylactic acid-based (PLA-based) fibers are prepared by solution blow spinning and their pore structures are regulated by controlling the ratio of the solvent components in the spinning solutions. The porous PLA-based fibers exhibit antibacterial efficiencies of over 99% against Escherichia coli and over 98% against Bacillus subtilis, which are significantly higher than that of the nonporous PLA-based fibers. The excellent antibacterial property of the porous PLA-based fibers can be attributed to their high porosity, which allows antibacterial nanoparticles to be released more easily from the fibers, thus effectively killing pathogenic microorganisms. Moreover, pore structure regulation can also enhance the mechanical property of the PLA-based fiber materials. Our approach of regulating the microstructure and properties of the PLA-based fibers through pore engineering can be extended to other polymer fiber materials and is suitable for polymer-based composite systems that require optimal performance through sufficient exposure of doped materials.


Asunto(s)
Nanofibras , Nanopartículas , Óxido de Zinc , Poliésteres , Polímeros/farmacología , Antibacterianos/farmacología , Escherichia coli
7.
Genet Res (Camb) ; 2023: 8586507, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113556

RESUMEN

Background: Cysteine and Glycine Rich Protein 1 (CSRP1) belongs to the cysteine-rich protein family, which contains a unique double-zinc finger motif and is important for development and cellular differentiation. Abnormal expression of CSRP1 was reported within several malignancies such as prostate cancer and acute myeloid leukemia. Here, we explored function of CSRP1 within colon adenocarcinoma (COAD) for the first time. Methods: The mRNA levels of CSRP1 in COADs were obtained from TCGA datasets. CSRP1 protein expressions in COADs were tested via immunohistochemistry staining. Patients' prognosis was evaluated using both univariate analysis and multivariate analysis. Two human COAD originated cancer cell lines, Caco-2, and HT-29, were used for cellular experiments including shRNA knockdown, proliferation assay, and migration assay. In vivo model was established using nude mice xenografts to further validate the role of CSRP1 in COAD progression. Results: The mRNA levels of CSRP1 are elevated in COAD specimens from patients with more advanced tumor stages and higher Carcinoembryonic Antigen (CEA) levels. In addition, higher CSRP1 mRNA level indicates worse COAD prognosis. Consistently, higher CSRP1 protein expression is correlated with worse overall survival according to both univariate and multivariate analysis, indicating that CSRP1 is a new COAD prognostic factor. Furthermore, COAD cells transfected with CSRP1-shRNAs exhibit attenuated proliferation and migration capacities. Finally, growth of xenografts originated from CSRP1-knockdown cells is inhibited comparing to the control ones. Conclusions: Expression of CSRP1 is positively correlated with COAD progression, which can promote tumor growth and migration. Higher CSRP1 can is a novel independent prognostic factor of COAD.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Animales , Humanos , Masculino , Ratones , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Biomarcadores , Células CACO-2 , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Cisteína , Ratones Desnudos , Pronóstico , ARN Mensajero/genética
8.
Int J Biol Macromol ; 226: 670-678, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36521703

RESUMEN

The fabrication of bio-based copolyester fiber with adjustable crystallization, orientation structure and mechanical property still remains a great challenge. In this study, a series of copolyester fibers based on terephthalic acid (PTA), ethylene glycol (EG) and l-Lactide (L-LA) were prepared via melt copolymerization and spinning. The resultant PLA-co-PET (PETLA) fibers exhibited tunable structure and property due to the synergistic effects of chemical structure and drawing process. The chemical structure of PETLA was confirmed by NMR, FTIR and XRD, which suggested that the random degree of copolymer increased with LA content and the viscosity decreased with the increase of LA content. The crystallization behavior, melting characteristic, thermal stability and rheological property were investigated by DSC, TGA and rheometer, the results indicated that all the PETLA exhibited the crystallization capacity, melting temperature and thermal stability were slightly affected by LA segment. The synergistic effects of LA segment and spinning process on PETLA structure and property were analyzed by WAXD and SAXS. The breaking strength of PETLA fibers dropped from 5.3 cN/dtex of PET to 2.8 cN/dtex of PET85LA15, which still met the requirements of most textile applications. Therefore, our work presented a feasible approach to prepare bio-based polyester fibers with tunable property.


Asunto(s)
Poliésteres , Polímeros , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Poliésteres/química , Cristalización
9.
Int J Biol Macromol ; 226: 1579-1587, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36503823

RESUMEN

As a kind of bio-based polymer, poly (lactic acid) has potential application in fibers fields. Due to the weak nucleation ability, PLA crystallizes slowly and forms large spherulites during the forming process, which deteriorates the properties of PLA fibers. In this work, melt-spun method is employed for the fabrication of PLA/T composite fibers using succinate diphenyl dihydrazide (TMC-306) as the nucleating agent, and then the hot-drawing and heat setting is performed to the as-spun fibers. Compared with pure PLA fibers, PLA/T fibers show faster crystallization rate and improved performance due to the synergistic effect of heterogeneous nucleation and stress-induced crystallization. The characterization of non-isothermal crystallization behavior indicates that the peak crystallization temperature as well as crystallinity of PLA composites is increased to 121.5 °C and 36.78 % respectively by blending 0.3 wt% TMC-306. Meanwhile, the obtained PLA/0.3T composite fibers are highly crystallized and oriented at hot-drawing ratio of 2.4 folds and heat setting temperature of 100 °C, and the conformational stability is noticeably enhanced. Further, the tensile strength and storage modulus of PLA/0.3T composite fiber are 3.46 cN/dtex and 46,953 MPa respectively, which are increased by 42 % and 41 % compared with neat PLA fibers.


Asunto(s)
Poliésteres , Polímeros , Cristalización , Poliésteres/química , Polímeros/química , Temperatura
10.
J Clin Lab Anal ; 36(7): e24520, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35666636

RESUMEN

BACKGROUND: The aim of this study was to explore the function and mechanism of GKN1 in gastric cancer (GC) progression. METHODS: Firstly, we used GEO2R to perform differential gene analysis on GSE26942 and GSE79973 and constructed the protein-protein interaction network of differential genes by STRING. Next, the cytoHubba, Mcode plugins, and GEPIA were used to obtain our follow-up research object GKN1. Then, the function of GKN1 in GC was verified by scratch and transwell assay in GC cells. We further analyzed the genes related to GKN1 through LinkedOmics, and exported top 100 genes positively or negatively correlated with GKN1. Meanwhile, Metascape was performed on these genes. Finally, we analyzed the miRNAs that bind to GKN1 through the miRDB and verified the correlation between miR-548d-3p and GKN1 using dual-fluorescence and quantitative PCR experiments. RESULTS: Bioinformatics analysis showed that there were 52 differential genes on GSE26942 and GSE79973. In addition, the results of functional assays indicated that overexpressed GKN1 can inhibit GC cell migration and invasion, while GKN1 knockdown demonstrated the opposite effect. Additionally, Metascape analysis results showed that the 3'-UTR region of mRNA is rich in AU sequences, based on which we infer that mRNA may be regulated by miRNA. Dual-fluorescence and quantitative PCR assays clarified that miR-548d-3p may be one of the target miRNAs of GKN1, which was up-regulated in GC tissues. CONCLUSIONS: In summary, we clarified that miR-548d-3p regulates GKN1 to participate in GC cell migration and invasion, and provides a possible target for the prognostic diagnosis and treatment of GC.


Asunto(s)
MicroARNs , Hormonas Peptídicas , Neoplasias Gástricas , Regiones no Traducidas 3' , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Hormonas Peptídicas/genética , ARN Mensajero/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
11.
ACS Nano ; 15(1): 1397-1406, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33275400

RESUMEN

Circularly polarized luminescence (CPL) switching has attracted great attention due to the potential applications in chiral photonics and electronics. However, the lack of examples to achieve switchable CPL within a single material in the dry solid state hampers the scope of applications. Herein, we demonstrate a crystalline chiral polymer film as a polarizing medium consisting of radially assembled twisted crystallites, where achiral aggregation-induced emissive luminogens (AIEgens) are confined between the twisted crystalline stacks, eventually yielding handedness-switchable CPL by simple film tilting. Hierarchically organized twisted crystallites create the selective reflection activity of the polarizing medium. Upon film tilting, enantiomeric switching is realized by selectively collecting transmitted and reflected CPL components. The confined AIEgens in the crystalline polarizing system show a great enhancement of the luminescence efficiency. Moreover, the approach is general with broadband activity, and various AIEgens could be applied to generate full-color-tunable CPL. Additionally, the rigid and continuous nature of this polarizing system affords enhanced optical stability and facile modulation, developing a general route for designing chiroptical materials.

12.
Polymers (Basel) ; 11(1)2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30960097

RESUMEN

The approach of in situ polymerization modification has proven to be an effective route for introducing functions for polyester materials. In this work, Cu2O@ZrP nanosheets with excellent dispersity and high antibacterial activity were integrated into in situ polymerized polyethylene terephthalate (PET) fibers, revealing an enhanced mechanical performance in comparison with the PET fibers fabricated directly via a traditional melt blending method. Additionally, such an in situ polymerized PET/Cu2O@ZrP fibers displayed highly enhanced mechanical properties; and great antibacterial activities against multi-types of bacterium, including S. aureus, E. coli and C. albicans. For the as-obtained two types of PET/Cu2O@ZrP fibers, we have detailed their molecular weight (detailed molecular weight) and dispersibility of nano-Cu2O@ZrP and fibers crystallinity was investigated by Gel chromatography (GPC), Scanning electron microscope (SEM), and X-ray diffractometer (XRD), respectively. The results showed that the aggregation of the nano-Cu2O@ZrP in the resultant PET matrix could be effectively prevented during its in situ polymerization process, hence we attribute its highly enhanced mechanical properties to its superior dispersion of nano-Cu2O@ZrP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA