Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39012897

RESUMEN

Ga-doped Li7La3Zr2O12 garnet solid electrolytes exhibit the highest Li-ion conductivities among the oxide-type garnet-structured solid electrolytes, but instabilities toward Li metal hamper their practical application. The instabilities have been assigned to direct chemical reactions between LiGaO2 coexisting phases and Li metal by several groups previously. Yet, the understanding of the role of LiGaO2 in the electrochemical cell and its electrochemical properties is still lacking. Here, we are investigating the electrochemical properties of LiGaO2 through electrochemical tests in galvanostatic cells versus Li metal and complementary ex situ studies via confocal Raman microscopy, quantitative phase analysis based on powder X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron energy loss spectroscopy. The results demonstrate considerable and surprising electrochemical activity, with high reversibility. A three-stage reaction mechanism is derived, including reversible electrochemical reactions that lead to the formation of highly electronically conducting products. The results have considerable implications for the use of Ga-doped Li7La3Zr2O12 electrolytes in all-solid-state Li-metal battery applications and raise the need for advanced materials engineering to realize Ga-doped Li7La3Zr2O12for practical use.

2.
Heliyon ; 10(11): e32470, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38933945

RESUMEN

Background: Neutrophils play important roles in atherosclerosis and atherothrombosis. Bactericidal/permeability-increasing protein (BPI) is mainly expressed in the granules of human neutrophils in response to inflammatory stress. This observational, cross-sectional study investigated the plasma level of BPI in patients with acute coronary syndrome (ACS) and its correlation with blood neutrophil counts and circulating inflammatory biomarkers. Methods: A total of 367 patients who had acute chest pain and who were admitted to our hospital for coronary angiography (CAG) and/or percutaneous coronary intervention (PCI) from May 1, 2020 to August 31, 2020 were recruited. Among them, 256 had a cardiac troponin value above the 99th percentile upper reference limit and were diagnosed with ACS. The remaining patients (n = 111) were classified as non-ACS. The TIMI and GRACE scores were calculated at admission. The Gensini score based on CAG was used to determine atherosclerotic burden. Plasma levels of interleukin (IL)-1ß, myeloperoxidase-DNA (MPO-DNA), high sensitivity C-reactive protein (hs-CRP), S100A8/A9, and BPI were measured using enzyme-linked immunosorbent assays. Correlations of plasma BPI levels with examination scores and levels of circulating inflammatory biomarkers were explored. Receiver operating characteristic (ROC) curve analysis was used to determine the diagnostic efficacy of BPI for ACS and myocardial infarction. Results: Patients in the ACS group showed significantly higher plasma BPI levels compared to the non-ACS group (46.42 ± 16.61 vs. 16.23 ± 6.19 ng/mL, p < 0.05). Plasma levels of IL-1ß, MPO-DNA, hs-CRP, and S100A8/A9 in the ACS group were also significantly higher than those in the non-ACS group (all p < 0.05). In addition, plasma BPI levels were positively correlated with the TIMI, GRACE, and Gensini scores (r = 0.176, p = 0.003; r = 0.320, p < 0.001; r = 0.263, p < 0.001, respectively) in patients with ACS. Plasma BPI levels were also positively correlated with blood neutrophil counts (r = 0.266, p < 0.001) and levels of circulating inflammatory biomarkers (IL-1ß, r = 0.512; MPO-DNA, r = 0.452; hs-CRP, r = 0.554; S100A8/A9, r = 0.434; all p < 0.001) in patients with ACS. ROC curve analysis revealed that the diagnostic efficacy of BPI for ACS was not inferior to that of IL-1ß, MPO-DNA, hs-CRP, S100A8/A9, or blood neutrophil counts. ROC analysis also showed that the diagnostic efficacy of BPI for myocardial infarction was not inferior to that of creatine kinase (CK)-MB or cardiac troponin I. Conclusion: BPI is associated with systemic inflammation in ACS and may be involved in the process of atherosclerosis and atherothrombosis. The potential of BPI as a prognostic and diagnostic biomarker for ACS should be investigated in clinical settings.

3.
ACS Appl Mater Interfaces ; 16(25): 32209-32219, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38863333

RESUMEN

Solid-state polymer electrolytes (SPEs), such as poly(ethylene oxide) (PEO), have good flexibility when compared to ceramic-type solid electrolytes. Therefore, it could be an ideal solid electrolyte for zero-excess all-solid-state Li metal battery (ZESSLB), also known as anode-free all-solid-state Li battery, development by offering better contact to the Cu current collector. However, the low Coulombic efficiencies observed from polymer type solid-state Li batteries (SSLBs) raise the concern that PEO may consume the limited amount of Li in ZESSLB to fail the system. Here, we designed ZESSLBs by using all-ceramic half-cells and an extra PEO electrolyte interlayer to study the reactivity between PEO and freshly deposited Li under a real battery operating conduction. By shuttling active Li back from the anode to the cathode, the PEO SPEs can be separated from the ZESSLBs for experimental studies without the influence from cathode materials or possible contamination from the usage of Li foil as the anode. Electrochemical cycling of ZESSLBs shows that the capacities of ZESSLBs with solvent-free and solvent-casted PEO SPEs significantly degraded compared to the ones with Li metal as the anode for the all-solid-state Li batteries. The fast capacity degradation of ZESSLBs using different types of PEO SPEs is evidenced to be associated with Li reacting with PEO, residual solvent, and water in PEO and dead Li formation upon the presence or absence of residual solvent. The results suggest that avoiding direct contact between the PEO electrolyte and deposited lithium is necessary when there is only a limited amount of Li available in ZESSLBs.

4.
ACS Nano ; 18(27): 17924-17938, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38937963

RESUMEN

The up-to-date lifespan of zero-excess lithium (Li) metal batteries is limited to a few dozen cycles due to irreversible Li-ion loss caused by interfacial reactions during cycling. Herein, a chemical prelithiated composite interlayer, made of lithiophilic silver (Ag) and lithiophobic copper (Cu) in a 3D porous carbon fiber matrix, is applied on a planar Cu current collector to regulate Li plating and stripping and prevent undesired reactions. The Li-rich surface coating of lithium oxide (Li2O), lithium carboxylate (RCO2Li), lithium carbonates (ROCO2Li), and lithium hydride (LiH) is formed by soaking and directly heating the interlayer in n-butyllithium hexane solution. Although only a thin coating of ∼10 nm is created, it effectively regulates the ionic and electronic conductivity of the interlayer via these surface compounds and reduces defect sites by reactions of n-butyllithium with heteroatoms in the carbon fibers during formation. The spontaneously formed lithiophilic-lithiophobic gradient across individual carbon fiber provides homogeneous Li-ion deposition, preventing concentrated Li deposition. The porous structure of the composite interlayer eliminates the built-in stress upon Li deposition, and the anisotropically distributed carbon fibers enable uniform charge compensation. These features synergistically minimize the side reactions and compensate for Li-ion loss while cycling. The prepared zero-excess Li metal batteries could be cycled 300 times at 1.17 C with negligible capacity fading.

5.
Nat Commun ; 15(1): 3773, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710738

RESUMEN

Bietti crystalline corneoretinal dystrophy (BCD) is an autosomal recessive chorioretinal degenerative disease without approved therapeutic drugs. It is caused by mutations in CYP4V2 gene, and about 80% of BCD patients carry mutations in exon 7 to 11. Here, we apply CRISPR/Cas9 mediated homology-independent targeted integration (HITI)-based gene editing therapy in HEK293T cells, BCD patient derived iPSCs, and humanized Cyp4v3 mouse model (h-Cyp4v3mut/mut) using two rAAV2/8 vectors via sub-retinal administration. We find that sgRNA-guided Cas9 generates double-strand cleavage on intron 6 of the CYP4V2 gene, and the HITI donor inserts the carried sequence, part of intron 6, exon 7-11, and a stop codon into the DNA break, achieving precise integration, effective transcription and translation both in vitro and in vivo. HITI-based editing restores the viability of iPSC-RPE cells from BCD patient, improves the morphology, number and metabolism of RPE and photoreceptors in h-Cyp4v3mut/mut mice. These results suggest that HITI-based editing could be a promising therapeutic strategy for those BCD patients carrying mutations in exon 7 to 11, and one injection will achieve lifelong effectiveness.


Asunto(s)
Sistemas CRISPR-Cas , Distrofias Hereditarias de la Córnea , Familia 4 del Citocromo P450 , Edición Génica , Terapia Genética , Células Madre Pluripotentes Inducidas , Enfermedades de la Retina , Humanos , Edición Génica/métodos , Animales , Células HEK293 , Distrofias Hereditarias de la Córnea/genética , Distrofias Hereditarias de la Córnea/terapia , Distrofias Hereditarias de la Córnea/patología , Distrofias Hereditarias de la Córnea/metabolismo , Ratones , Células Madre Pluripotentes Inducidas/metabolismo , Terapia Genética/métodos , Familia 4 del Citocromo P450/genética , Familia 4 del Citocromo P450/metabolismo , Modelos Animales de Enfermedad , Mutación , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Vectores Genéticos/genética , Intrones/genética , Exones/genética
6.
J Cardiothorac Surg ; 19(1): 180, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580976

RESUMEN

BACKGROUND: The efficacy and safety of low-pressure balloon pre-dilatation before intracoronary pro-urokinase (pro-UK) in preventing no-reflow during percutaneous coronary intervention (PCI) remains unknown. This study aimed to evaluate the clinical outcomes of intracoronary pro-UK combined with low-pressure balloon pre-dilatation in patients with anterior ST-segment-elevation myocardial infarction (STEMI). METHODS: This was a randomized, single-blind, investigator-initiated trial that included 179 patients diagnosed with acute anterior STEMI. All patients were eligible for PCI and were randomized into two groups: intracoronary pro-UK combined with (ICPpD group, n = 90) or without (ICP group, n = 89) low-pressure balloon pre-dilatation. The main efficacy endpoint was complete epicardial and myocardial reperfusion. The safety endpoints were major adverse cardiovascular events (MACEs), which were analyzed at 12 months follow-up. RESULTS: Patients in the ICPpD group presented significantly higher TIMI myocardial perfusion grade 3 (TMPG3) compared to those in the ICP group (77.78% versus 68.54%, P = 0.013), and STR ≥ 70% after PCI 30 min (34.44% versus 26.97%, P = 0.047) or after PCI 90 min (40.0% versus 31.46%, P = 0.044). MACEs occurred in 23 patients (25.56%) in the ICPpD group and in 32 patients (35.96%) in the ICP group. There was no difference in hemorrhagic complications during hospitalization between the groups. CONCLUSION: Patients with acute anterior STEMI presented more complete epicardial and myocardial reperfusion with adjunctive low-pressure balloon pre-dilatation before intracoronary pro-UK during PCI. TRIAL REGISTRATION: 2019xkj213.


Asunto(s)
Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Activador de Plasminógeno de Tipo Uroquinasa , Humanos , Infarto del Miocardio con Elevación del ST/cirugía , Intervención Coronaria Percutánea/efectos adversos , Dilatación , Método Simple Ciego , Resultado del Tratamiento , Proteínas Recombinantes
7.
Signal Transduct Target Ther ; 9(1): 95, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38653979

RESUMEN

Bietti crystalline corneoretinal dystrophy is an inherited retinal disease caused by mutations in CYP4V2, which results in blindness in the working-age population, and there is currently no available treatment. Here, we report the results of the first-in-human clinical trial (NCT04722107) of gene therapy for Bietti crystalline corneoretinal dystrophy, including 12 participants who were followed up for 180-365 days. This open-label, single-arm exploratory trial aimed to assess the safety and efficacy of a recombinant adeno-associated-virus-serotype-2/8 vector encoding the human CYP4V2 protein (rAAV2/8-hCYP4V2). Participants received a single unilateral subretinal injection of 7.5 × 1010 vector genomes of rAAV2/8-hCYP4V2. Overall, 73 treatment-emergent adverse events were reported, with the majority (98.6%) being of mild or moderate intensity and considered to be procedure- or corticosteroid-related; no treatment-related serious adverse events or local/systemic immune toxicities were observed. Compared with that measured at baseline, 77.8% of the treated eyes showed improvement in best-corrected visual acuity (BCVA) on day 180, with a mean ± standard deviation increase of 9.0 ± 10.8 letters in the 9 eyes analyzed (p = 0.021). By day 365, 80% of the treated eyes showed an increase in BCVA, with a mean increase of 11.0 ± 10.6 letters in the 5 eyes assessed (p = 0.125). Importantly, the patients' improvement observed using multifocal electroretinogram, microperimetry, and Visual Function Questionnaire-25 further supported the beneficial effects of the treatment. We conclude that the favorable safety profile and visual improvements identified in this trial encourage the continued development of rAAV2/8-hCYP4V2 (named ZVS101e).


Asunto(s)
Distrofias Hereditarias de la Córnea , Familia 4 del Citocromo P450 , Dependovirus , Terapia Genética , Enfermedades de la Retina , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Distrofias Hereditarias de la Córnea/genética , Distrofias Hereditarias de la Córnea/terapia , Distrofias Hereditarias de la Córnea/patología , Dependovirus/genética , Familia 4 del Citocromo P450/genética , Vectores Genéticos/genética , Agudeza Visual
8.
Biochem Genet ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347290

RESUMEN

Fanconi anemia (FA) is the predominant hereditary syndrome of bone marrow failure (BMF), distinguished by impairments in DNA repair mechanisms. The deficiency in the FANC pathway, which governs DNA repair and replication rescue, results in aberrant responses to DNA damage in individuals with FA. The objective of this study is to examine the involvement of the FANC core complex in BMF and ascertain nucleolar homeostasis-related genes by conducting transcriptome analysis on primary hematopoietic stem cells obtained from FA patients with FANCA and FANCC variants. In the present study, we analyzed scRNA-seq data obtained from both healthy donors and individuals diagnosed with FA in order to investigate the phenomenon of cell-cell communication. Through the implementation of trajectory analysis, the differentiation pathways of several progenitor cell types, such as HSC cells transitioning into LMPP, N, M, B-prog, and E cells, were elucidated. Moreover, by scrutinizing the inferred interactions, notable disparities in cell-cell communication were observed between FA patients and their healthy counterparts. Our analysis has unveiled heightened interactions involving TNFSF13B, MIF, IL16, and COL4A2 in patients with FA. Furthermore, we have developed a prognostic model for predicting the outcome of acute myeloid leukemia (AML) which has exhibited remarkable predictive precision, with an AUC exceeding 0.83 at the 3- and 5-year intervals following the baseline assessment. In summary, the prognostic model that has been developed provides a valuable instrument for forecasting outcomes of AML by utilizing the genes identified through both single-cell and bulk transcriptome analyses.

9.
Hum Genet ; 143(2): 197-210, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38282009

RESUMEN

The purpose of this study was to screen Copy Number Variations (CNVs) in 35 unsolved Inherited Retinal Dystrophy (IRD) families. Initially, next generation sequencing, including a specific Hereditary Eye Disease Enrichment Panel or Whole exome sequencing, was employed to screen (likely) pathogenic Single-nucleotide Variants (SNVs) and small Insertions and Deletions (indels) for these cases. All available SNVs and indels were further validated and co-segregation analyses were performed in available family members by Sanger sequencing. If not, after excluding deep intronic variants, Multiplex ligation-dependent probe amplification (MLPA), quantitative fluorescence PCR (QF-PCR) and Sanger sequencing were employed to screen CNVs. We determined that 18 probands who had heterozygous SNVs/indels or whose parents were not consanguineous but had homozygous SNVs/indels in autosomal recessive IRDs genes had CNVs in another allele of these genes, 11 families had disease-causing hemizygous CNVs in X-linked IRD genes, 6 families had (likely) pathogenic heterozygous CNVs in PRPF31 gene. Of 35 families, 33 different CNVs in 16 IRD-associated genes were detected, with PRPF31, EYS and USH2A the most common disease-causing gene in CNVs. Twenty-six and 7 of them were deletion and duplication CNVs, respectively. Among them, 14 CNVs were first reported in this study. Our research indicates that CNVs contribute a lot to IRDs, and screening of CNVs substantially increases the diagnostic rate of IRD. Our results emphasize that MLPA and QF-PCR are ideal methods to validate CNVs, and the novel CNVs reported herein expand the mutational spectrums of IRDs.


Asunto(s)
Distrofias Retinianas , Síndromes de Usher , Humanos , Variaciones en el Número de Copia de ADN , Mutación , Heterocigoto , Proteínas del Ojo/genética
10.
ACS Nano ; 17(22): 22901-22915, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37939210

RESUMEN

Intestinal epithelium undergoes regeneration after injuries, and the disruption of this process can lead to inflammatory bowel disease and tumorigenesis. Intestinal stem cells (ISCs) residing in the crypts are crucial for maintaining the intestinal epithelium's homeostasis and promoting regeneration upon injury. However, the precise role of DGCR8, a critical component in microRNA (miRNA) biogenesis, in intestinal regeneration remains poorly understood. In this study, we provide compelling evidence demonstrating the indispensable role of epithelial miRNAs in the regeneration of the intestine in mice subjected to 5-FU or irradiation-induced injury. Through a comprehensive pooled screen of miRNA function in Dgcr8-deficient organoids, we observe that the loss of the miR-200 family leads to the hyperactivation of the p53 pathway, thereby reducing ISCs and impairing epithelial regeneration. Notably, downregulation of the miR-200 family and hyperactivation of the p53 pathway are verified in colonic tissues from patients with active ulcerative colitis (UC). Most importantly, the transient supply of miR-200 through the oral delivery of lipid nanoparticles (LNPs) carrying miR-200 restores ISCs and promotes intestinal regeneration in mice following acute injury. Our study implies the miR-200/p53 pathway as a promising therapeutic target for active UC patients with diminished levels of the miR-200 family. Furthermore, our findings suggest that the clinical application of LNP-miRNAs could enhance the efficacy, safety, and acceptability of existing therapeutic modalities for intestinal diseases.


Asunto(s)
Colitis Ulcerosa , MicroARNs , Humanos , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Regeneración , Proteínas de Unión al ARN , Intestinos , Mucosa Intestinal , Colitis Ulcerosa/metabolismo
11.
Front Neurol ; 14: 1275460, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954644

RESUMEN

Introduction: H-type hypertension (HHTN) is a subtype of hypertension that tends to worsen the prognosis of acute ischemic stroke (AIS). Recent studies have highlighted the vital role of gut microbiota in both hypertension and AIS, but there is little available data on the relationship between gut microbiota and the progression of AIS patients with HHTN. In this study, we investigated the microbial signature of AIS patients with HHTN and identified characteristic bacteria as biomarkers for predicting prognosis. Methods: AIS patients with HHTN (n = 150) and without HHTN (n = 50) were enrolled. All patients received a modified Rankin Scale (mRS) assessment at 3 months after discharge. Fecal samples were collected from the participants upon admission, including 150 AIS patients with HHTN, 50 AIS patients with non-HHTN, and 90 healthy subjects with HHTN. These samples were analyzed using 16S rRNA sequencing to characterize the bacterial taxa, predict functions, and conduct correlation analysis between specific taxa and clinical features. Results: Our results showed that the composition of the gut microbiota in HHTN patients differed significantly from that in non-HHTN patients. The abundance of the genera Bacteroides, Escherichia-Shigella, Lactobacillus, Bifidobacterium, and Prevotella in AIS patients with HHTN was significantly increased compared to AIS patients without HHTN, while the genus Streptococcus, Faecalibacterium, and Klebsiella were significantly decreased. Moreover, Bacteroides, Lactobacillus, Bifidobacterium, and Klebsiella in AIS patients with HHTN were more abundant than healthy subjects with HHTN, while Escherichia-Shigella, Blautia, and Faecalibacterium were less abundant. Moreover, the genera Butyricicoccus, Rothia, and Family_XIII_UCG-001 were negatively connected with the NIHSS score, and the genera Butyricicoccus and Rothia were observed to be negatively associated with the mRS score. The genera Butyricicoccus, Romboutsia, and Terrisporobacter were associated with a poor prognosis, whereas the increase in Butyricimonas and Odoribacter was correlated with good outcomes. Generated by eight genera and clinical indexes, the area under the curve (AUC) value of the receiver operating characteristic (ROC) curve achieved 0.739 to effectively predict the prognosis of AIS patients with HHTN. Conclusion: These findings revealed the microbial signature of AIS patients with HHTN and further provided potential microbial biomarkers for the clinical diagnosis of AIS patients with HHTN.

12.
Sci Adv ; 9(43): eadi1827, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37889976

RESUMEN

Bone morphogenic protein (BMP) signaling is critical for intestinal development, homeostasis, and function performance. Although the function of BMP signaling in the intestinal epithelium is well appreciated, the direct effect of BMP on intestinal stromal cells is poorly understood. Here, we show that disruption of BMP signaling by genetic ablation of Alk3 or Smad4 expands the stromal cell pool, the mucosa tumefaction, and colonic polyposis in the large intestine. Interleukin (IL) secretion by stromal cells is notably increased, including IL-1, IL-11, and IL-17. Specifically, IL-1 and IL-17a hyperactivate the mucin production by goblet cells through nuclear factor κB signaling, and abnormal mucin accumulation results in the morphological changes, epithelial barrier destruction, and polyposis development. Together, our results provide an insight into the role of BMP signaling in intestinal stromal cells to regulate epithelium function. This study further highlights the role of mucin-producing goblet cells in intestinal homeostasis and colitis development.


Asunto(s)
Neoplasias Colorrectales , Mucinas , Humanos , Mucinas/metabolismo , Interleucina-17 , Transducción de Señal/fisiología , Interleucina-1
14.
Front Pharmacol ; 14: 1213891, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680718

RESUMEN

Background: SERPINE1, a serine protease inhibitor involved in the regulation of the plasminogen activation system, was recently identified as a cancer-related gene. However, its clinical significance and potential mechanisms in pan-cancer remain obscure. Methods: In pan-cancer multi-omics data from public datasets, including The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx), and online web tools were used to analyze the expression of SERPINE1 in different cancers and its correlation with prognosis, genetic alteration, DNA promoter methylation, biological processes, immunoregulator expression levels, immune cell infiltration into tumor, tumor mutation burden (TMB), microsatellite instability (MSI), immunotherapy response and drug sensitivity. Further, two single-cell databases, Tumor Immune Single-cell Hub 2 (TISCH2) and CancerSEA, were used to explore the expression and potential roles of SERPINE1 at a single-cell level. The aberrant expression of SERPINE1 was further verified in clear cell renal cell carcinoma (ccRCC) through qRT-PCR of clinical patient samples, validation in independent cohorts using The Gene Expression Omnibus (GEO) database, and proteomic validation using the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Results: The expression of SERPINE1 was dysregulated in cancers and enriched in endothelial cells and fibroblasts. Copy number amplification and low DNA promoter methylation could be partly responsible for high SERPINE1 expression. High SERPINE1 expression was associated with poor prognosis in 21 cancers. The results of gene set enrichment analysis (GSEA) indicated SERPINE1 involvement in the immune response and tumor malignancy. SERPINE1 expression was also associated with the expression of several immunoregulators and immune cell infiltration and could play an immunosuppression role. Besides, SERPINE1 was found to be related with TMB, MSI, immunotherapy response and sensitivity to several drugs in cancers. Finally, the high expression of SERPINE1 in ccRCC was verified using qRT-PCR performed on patient samples, six independent GEO cohorts, and proteomic data from the CPTAC database. Conclusion: The findings of the present study revealed that SERPINE1 exhibits aberrant expression in various types of cancers and is associated with cancer immunity and tumor malignancy, providing novel insights for individualized cancer treatment.

15.
Cell Regen ; 12(1): 30, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37574502

RESUMEN

Paracrine signals play pivotal roles in organ homeostasis. Mesenchymal stromal cells (MSCs) play a key role in regulating epithelium homeostasis in the intestine while their paracrine effects are poorly characterized. Here, we identified prostaglandin E2 (PGE2) secreted by cyclooxygenase (COX)-expressing MSCs as a vital factor to maintain the intestinal mucosal barrier. We found that MSCs-induced organoid swelling through paracrine effect in vitro, a process due to enhanced water adsorption and is mediated by the COX-PGE2-EP4 axis. To further explore the regulatory effect of this axis on the intestinal epithelial barrier in vivo, we established the conditional knockout mouse model to specifically delete COX in MSCs and found that PGE2 reduction downregulated the gene Muc2 and induced a gastric metaplasia-like phenotype. Moreover, PGE2 defects increased the susceptibility of intestinal epithelium to colitis. Our study uncovers the paracrine signaling of COX-expressing MSCs in intestinal mucosal barrier maintenance, providing a basis for understanding the role of mesenchymal cells in the pathophysiological function of the intestine.

16.
Angew Chem Int Ed Engl ; 62(35): e202304931, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37431837

RESUMEN

Reducing non-radiative recombination energy loss (ΔE3 ) is one key to boosting the efficiency of organic solar cells. Although the recent studies have indicated that the Y-series asymmetric acceptors-based devices featured relatively low ΔE3 , the understanding of the energy loss mechanism derived from molecular structure change is still lagging behind. Herein, two asymmetric acceptors named BTP-Cl and BTP-2Cl with different terminals were synthesized to make a clear comparative study with the symmetric acceptor BTP-0Cl. Our results suggest that asymmetric acceptors exhibit a larger difference of electrostatic potential (ESP) in terminals and semi-molecular dipole moment, which contributes to form a stronger π-π interaction. Besides, the experimental and theoretical studies reveal that a lower ESP-induced intermolecular interaction can reduce the distribution of PM6 near the interface to enhance the built-in potential and decrease the charge transfer state ratio for asymmetric acceptors. Therefore, the devices achieve a higher exciton dissociation efficiency and lower ΔE3 . This work establishes a structure-performance relationship and provides a new perspective to understand the state-of-the-art asymmetric acceptors.

17.
ACS Appl Mater Interfaces ; 15(29): 34973-34982, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37442800

RESUMEN

Li10GeP2S12 is a phosphosulfide solid electrolyte that exhibits exceptionally high Li-ion conductivity, reaching a conductivity above 10-3 S cm-1 at room temperature, rivaling that of liquid electrolytes. Herein, a method to produce glassy-ceramic Li10GeP2S12 via a single-step utilizing high-energy ball milling was developed and systematically studied. During the high energy milling process, the precursors experience three different stages, namely, the 'Vitrification zone' where the precursors undergo homogenization and amorphization, 'Intermediary zone' where Li3PS4 and Li4GeS4 are formed, and the 'Product stage' where the desired glassy-ceramic Li10GeP2S12 is formed after 520 min of milling. At room temperature, the as-milled sample achieved a high ionic conductivity of 1.07 × 10-3 S cm-1. It was determined via quantitative phase analyses (QPA) of transmission X-ray diffraction results that the as-milled Li10GeP2S12 possessed a high degree of amorphization (44.4 wt %). To further improve the crystallinity and ionic conductivity of the Li10GeP2S12, heat treatment of the as-milled sample was carried out. The optimal heat-treated Li10GeP2S12 is almost fully crystalline and possesses a room temperature ionic conductivity of 3.27 × 10-3 S cm-1, an over 200% increase compared to the glassy-ceramic Li10GeP2S12. These findings help provide previously lacking insights into the controllable preparation of Li10GeP2S12 material.

18.
BMJ Open ; 13(7): e071407, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474175

RESUMEN

OBJECTIVE: This study aims to comprehensively evaluate the resources for prevention and control of chronic and non-communicable diseases (NCDs) in China to provide a reference basis for optimising the resource allocation for prevention and control of NCDs. METHODS: China Chronic Disease and Risk Factor Surveillance sites and National Demonstration Areas for Integrated Chronic and Non-communicable Disease Prevention and Control (NCDDA) were selected as investigation objects. In December 2021, the district (or county) resource allocation for NCD prevention and control was investigated through the NCDDA management information system. According to the index system of NCD prevention and control, 31 indicators of 6 dimensions were collected, and the weighted technique for order preference by similarity to an ideal solution, weighted rank-sum ratio and fuzzy comprehensive evaluation methods were used for comprehensive evaluation of resources for prevention and control of NCDs. RESULTS: The 653 districts (or counties) in this study cover 22.96% of China's districts (or counties). The top three weights were full-time staff for NCD prevention and control (0.1066), the amount of funds for NCD prevention and control (0.0967), and the coverage rate of districts (or counties) establishing chronic obstructive pulmonary disease surveillance information system (0.0886). The comprehensive evaluation results for the resources for prevention and control of NCDs by the three methods were basically the same. The results of fuzzy comprehensive evaluation showed that the resource allocation in urban areas (0.9268) was better than that in rural areas (0.3257), the one in eastern region (0.9016) was better than that in central (0.3844) and western regions (0.3868), and the one in NCDDA (0.9625) was better than that in non-NCDDA (0.2901). CONCLUSION: The resources in China for NCD prevention and control differ among different regions, which should be taken into account in future policymaking and resource allocation.


Asunto(s)
Enfermedades no Transmisibles , Humanos , Enfermedades no Transmisibles/epidemiología , Enfermedades no Transmisibles/prevención & control , Estudios Transversales , Factores de Riesgo , Enfermedad Crónica , China/epidemiología
19.
Small ; 19(40): e2302863, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37263986

RESUMEN

Li-ion transport and phase transition of solid electrolytes are critical and fundamental issues governing the rate and cycling performances of solid-state batteries. In this work, in-operando high-pressure nuclear magnetic resonance (NMR) spectroscopy for the solid-state battery is developed and applied, in combination with 6 Li-tracer NMR and high-resolution NMR spectroscopy, to investigate the Li10 GeP2 S12 electrolyte under true-to-life operation conditions. The results reveal that the Li10 GeP2 S12 phase may become more disordered and a large amount of conductive metastable ß-Li3 PS4 as the glassy matrix in the electrolyte transforms into less conductive phases, mainly γ-Li3 PS4 , when high current densities (e.g., ≥0.5 mA cm-2 ) are applied to the electrolyte. The overall Li-transport also varies and shows a tendency of boundary phases and Li10 GeP2 S12 synergistic dominant conduction at high currents. Accordingly, a mechanism of structural change induced by stress variation due to the drastic morphological change during Li-In alloying at high currents, and the local Li+ diffusion coefficient discrepancy is proposed. These new findings of Li-ion transport and boundary phase transition in Li10 GeP2 S12 solid electrolyte under high-pressure and high current density are first reported and will help provide previously lacking insights into the relationship of structure and performance of Li10 GeP2 S12 .

20.
Adv Sci (Weinh) ; 10(23): e2300708, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37261975

RESUMEN

Transforming growth factor beta (TGF-ß), a multifunctional cytokine, plays critical roles in immune responses. However, the precise role of TGF-ß in colitis and colitis-associated cancer remains poorly defined. Here, it is demonstrated that TGF-ß promotes the colonic inflammation and related tumorigenesis in the absence of Smad family member 4 (Smad4). Smad4 loss in intestinal epithelium aggravates colitis and colitis-associated neoplasia induced by dextran sulfate sodium (DSS) and azoxymethane/dextran sulfate sodium (AOM/DSS), leading to over-activated immune responses and increased TGF-ß1 levels. In Smad4-deficient organoids, TGF-ß1 stimulates spheroid formation and impairs intestinal stem cell proliferation and lineage specification. YAP, whose expression is directly upregulated by TGF-ß1 after Smad4 deletion, mediates the effect of TGF-ß1 by interacting with Smad2/3. Attenuation of YAP/TAZ prevents TGF-ß1-induced spheroid formation in Smad4-/- organoids and alleviates colitis and colitis-associated cancer in Smad4-deficient mice. Collectively, these results highlight an integral role of the TGF-ß/Smad4 axis in restraining intestinal inflammation and tumorigenesis and suggest TGF-ß or YAP signaling as therapeutic targets for these gastrointestinal diseases intervention.


Asunto(s)
Neoplasias Asociadas a Colitis , Colitis , Ratones , Animales , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Sulfato de Dextran/efectos adversos , Inflamación/metabolismo , Carcinogénesis , Colitis/inducido químicamente , Transformación Celular Neoplásica , Mucosa Intestinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA