Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Fitoterapia ; 175: 105924, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38537886

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease, and accumulating evidence suggested that proteostatic imbalance is a key feature of the disease. Traditional Chinese medicine exhibits a multi-target therapeutic effect, making it highly suitable for addressing protein homeostasis imbalance in AD. Dendrobium officinale is a traditional Chinese herbs commonly used as tonic agent in China. In this study, we investigated protection effects of D. officinale phenolic extract (SH-F) and examined its underlying mechanisms by using transgenic Caenorhabditis elegans models. We found that treatment with SH-F (50 µg/mL) alleviated Aß and tau protein toxicity in worms, and also reduced aggregation of polyglutamine proteins to help maintain proteostasis. RNA sequencing results showed that SH-F treatment significantly affected the proteolytic process and autophagy-lysosomal pathway. Furthermore, we confirmed that SH-F showing maintainance of proteostasis was dependent on bec-1 by qRT-PCR analysis and RNAi methods. Finally, we identified active components of SH-F by LC-MS method, and found the five major compounds including koaburaside, tyramine dihydroferulate, N-p-trans-coumaroyltyramine, naringenin and isolariciresinol are the main bioactive components responsible for the anti-AD activity of SH-F. Our findings provide new insights to develop a treatment strategy for AD by targeting proteostasis, and SH-F could be an alternative drug for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Autofagia , Caenorhabditis elegans , Dendrobium , Modelos Animales de Enfermedad , Extractos Vegetales , Proteostasis , Animales , Caenorhabditis elegans/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Dendrobium/química , Proteostasis/efectos de los fármacos , Autofagia/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Extractos Vegetales/farmacología , Animales Modificados Genéticamente , Proteínas tau/metabolismo , Fenoles/farmacología , Fenoles/aislamiento & purificación , Flavanonas/farmacología , Medicamentos Herbarios Chinos/farmacología , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación
2.
Biogerontology ; 21(2): 245-256, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31960183

RESUMEN

Coix seed oil (CSO) has many beneficial effects, but there is limited research on its influence on the processes and mechanisms related to senescence. Here, we used Caenorhabditis elegans as an in vivo model to investigate CSO's bioeffects on longevity. CSO (1 mg/mL) significantly extended the mean lifespan of C. elegans by over 22.79% and markedly improved stress resistance. Gene-specific mutant studies showed that the CSO-mediated increase in life expectancy was dependent on mev-1, hsf-1 and daf-16, but not daf-2. Furthermore, CSO significantly upregulated stress-inducible genes, including daf-16 and its downstream genes (sod-3, hsp-16.2 and gst-4). In addition, four major fatty acids, linoleic, oleic, palmitic and stearic, played leading roles in C. elegans' extended lifespan. Thus, CSO increased the life expectancy of, and enhanced the stress resistance in, C. elegans mainly through daf-16 and its downstream genes, but not through the insulin/insulin-like growth factor 1 signaling pathway.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Coix , Longevidad/efectos de los fármacos , Aceites de Plantas/administración & dosificación , Semillas , Estrés Fisiológico/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Coix/química , Citocromos b/genética , Citocromos b/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Aceites de Plantas/aislamiento & purificación , Semillas/química , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Zhongguo Zhong Yao Za Zhi ; 44(5): 948-953, 2019 Mar.
Artículo en Chino | MEDLINE | ID: mdl-30989854

RESUMEN

Longshengzhi capsule consisting of 12 herbs is widely used in clinically treating cerebral ischemia during recovery period.In this study,in order to investigate the consistency of different batches of Longshengzhi capsules,a high performance liquid chromatography coupled to triple quadrupole mass spectrometry method(HPLC-QQQ/MS) was developed for the determination of 19 representative components in Longshengzhi Capsules within 9 min. Methodology validation indicated this method was simple,rapid,accurate,highly sensitive and reproducible,and it could be used for the content determination of components in Longshengzhi Capsules. The consistency analysis results showed that paeoniflorin and calycosin-7-glucoside in Longshengzhi Capsules had the highest content; RSD value of total content of 19 compounds was 5. 2% and the RSD value of main compounds such as astragaloside and calycosin-7-glucoside was all less than 15%,reflecting good consistency among different batches. This study has provided a scientific method and basis for the quality control and consistency evaluation of Longshengzhi Capsules.


Asunto(s)
Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/normas , Cápsulas , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Reproducibilidad de los Resultados
4.
Free Radic Biol Med ; 129: 310-322, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30266681

RESUMEN

Lonicera japonica (LJ) is widely used as the local medicine to improve body and prevent ills in China, but mechanisms of its healthy beneficial effects remain largely unclear. Here, we evaluated the anti-aging and healthspan promoting activities of 75% ethanol extract of LJ (LJ-E) in the animal model Caenorhabditis elegans. Our results showed that LJ-E (500 µg/mL) treatment enhanced the mean lifespan of worms by over 21.87% and significantly improved age-associated physiological functions in C. elegans. The 500 µg/mL concentration of LJ-E enhanced the survival rates under oxidative and thermal stresses, and decreased reactive oxygen species (ROS) levels and fat accumulation in the worms. Gene-specific mutant studies showed that LJ-E-mediated lifespan extension was dependent on mev-1, daf-2, daf-16, and hsf-1, but not eat-2 genes. LJ-E could upregulate stress-inducible genes, viz., hsp-16.2, sod-3 and mtl-1. Moreover, we found that the D1086.10 protein interacted with superoxide dismutase (SOD)-3 by functional protein association networks analysis according to RNA-sequencing results. It was confirmed that D1086.10 was needed to promote longevity, and positively regulated expression of sod-3 by using D1086.10 mutants. Furthermore, LJ-E significantly delayed amyloid ß-protein induced paralysis in CL4176 strain. Given the important role of autophagy in aging and protein homeostasis, we observed that LJ-E could remarkably increase the mRNA expression of autophagy gene bec-1 in CL4176 strain, and decrease expression of autophagy substrate p62 protein by more than 40.0% in BC12921 strain. Finally, we found that combination composed of three major compounds (54 µg/mL chlorogenic acid, 15 µg/mL 1,5-dicaffeoylquinic acid and 7.5 µg/mL 1,3-dicaffeoylquinic acid) of 500 µg/mL LJ-E could significantly delay paralysis in CL4176 worms caused by Aß toxicity, comparable to that of LJ-E. Overall, our study may have important implications in using Lonicera japonica to promote healthy aging and have a potency to design therapeutics for age-related diseases.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Longevidad/efectos de los fármacos , Lonicera/química , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/crecimiento & desarrollo , Tejido Adiposo/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ácido Clorogénico/farmacología , Cinamatos/farmacología , Citocromos b/genética , Citocromos b/metabolismo , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Longevidad/genética , Metalotioneína/genética , Metalotioneína/metabolismo , Parálisis/prevención & control , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacología , Especies Reactivas de Oxígeno/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Estrés Fisiológico , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA