Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 11(4)2018 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-29570696

RESUMEN

Poly(chloro-p-xylylene) (PPXC) film has a water contact angle (WCA) of only about 84°. It is necessary to improve its hydrophobicity to prevent liquid water droplets from corroding or electrically shorting metallic circuits of semiconductor devices, sensors, microelectronics, and so on. Herein, we reported a facile approach to improve its surface hydrophobicity by varying surface pattern structures under different temperature and relative humidity (RH) conditions on a thermal curable polydimethylsiloxane (PDMS) and hydrophobic silica (SiO2) nanoparticle coating. Three distinct large-scale surface patterns were obtained mainly depending on the contents of SiO2 nanoparticles. The regularity of patterns was mainly controlled by the temperature and RH conditions. By changing the pattern structures, the surface wettability of PPXC film could be improved and its WCA was increased from 84° to 168°, displaying a superhydrophobic state. Meanwhile, it could be observed that water droplets on PPXC film with superhydrophobicity were transited from a "Wenzel" state to a "Cassie" state. The PPXC film with different surface patterns of 200 µm × 200 µm and the improved surface hydrophobicity showed wide application potentials in self-cleaning, electronic engineering, micro-contact printing, cell biology, and tissue engineering.

2.
Environ Technol ; 35(21-24): 2885-93, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25176494

RESUMEN

Nitrogen-removal performance was investigated in a penicillin wastewater biological treatment plant (P-WWTP) reconstructed from a cyclic activated sludge system (CASS) tank designed for simultaneous nitrification and denitrification (SND). Good performance was obtained during a 900-day operation period, as indicated by effluent chemical oxygen demand (COD), total nitrogen (TN) and ammonia nitrogen (NH3‒N) values of 318 ± 34, 28.7 ± 2.4 and<0.2 mg L⁻¹ when the influent COD, total Kjeldahl nitrogen (TKN) and NH3‒N were 3089 ± 453, 251.4 ± 26.5 and 124.8 ± 26.8 mg L⁻¹, respectively. Nitrification and denitrification occurred at different spaces, that is, 71.4% of TN removal occurred in the first 40% of the aeration tank, while 68.8% of the TKN removal occurred in 40-100% of the aeration tank. Sufficient easily biodegradable organics (EBO) in wastewater were key to the occurrence of SND. The denitrification rate under aeration conditions was 10.7 mg N g VSS⁻¹ h⁻¹ when EBO were sufficient, but 0.98 mg N g VSS⁻¹ h⁻¹ when EBO were completely degraded. Nitrification primarily occurred in the rear of the aeration tank owing to the competition for oxygen between carbonaceous oxidation and nitrification. The nitrification rate was only 7.13 mg NOD g VSS⁻¹ h⁻¹ at the beginning of the reaction, but 14.7 mg NOD g VSS⁻¹ h⁻¹ when EBO were completely degraded. These results will facilitate the improvement of nitrogen removal by existing WWTPs.


Asunto(s)
Reactores Biológicos , Nitrógeno/metabolismo , Penicilinas , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Amoníaco/metabolismo , Análisis de la Demanda Biológica de Oxígeno , Desnitrificación , Nitrificación , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA