Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1410295, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076512

RESUMEN

Background: The gut microbiota plays a pivotal role in the development of diabetes and kidney disease. However, it is not clear how the intestinal microecological imbalance is involved in the context of diabetic kidney disease (DKD), the leading cause of renal failure. Objectives: To elucidate the gut microbial signatures associated with DKD progression towards end-stage renal disease (ESRD) and explore whether they could reflect renal dysfunction and psychological distress. Methods: A cross-sectional study was conducted to explore the gut microbial signatures of 29 DKD non-ESRD patients and 19 DKD ESRD patients compared to 20 healthy controls. Differential analysis was performed to detect distinct gut microbial alterations in diversities and taxon abundance of DKD with and without ESRD. Renal dysfunction was estimated by urea, creatinine, and estimated glomerular filtration rate. Psychological distress was assessed using the Self-Rating Anxiety Scale, Self-Rating Depression Scale, Hamilton Anxiety Rating Scale, and Hamilton Depression Rating Scale. Results: Alpha diversity indexes were reduced in DKD patients, particularly those with ESRD. Beta diversity analysis revealed that the gut microbial compositions of DKD patients were different with healthy individuals whereas similar compositions were observed in DKD patients. Taxon differential analysis showed that when compared with the controls, DKD patients exhibit distinct microbial profiles including reduced abundances of butyrate-produced, anti-inflammatory bacteria Faecalibacterium, Lachnospira, Roseburia Lachnoclostridium, and increased abundances of pro-inflammatory bacteria Collinsella, Streptococcus etc. These distinctive genera presented consistent associations with renal dysfunction, as well as psychological distress, especially in DKD patients. Conclusions: DKD patients, especially those who have progressed to ESRD, exhibit unique characteristics in their gut microbiota that are associated with both renal dysfunction and psychological distress. The gut microbiota may be a significant factor in the deterioration of DKD and its eventual progression to ESRD.


Asunto(s)
Nefropatías Diabéticas , Microbioma Gastrointestinal , Distrés Psicológico , Humanos , Masculino , Nefropatías Diabéticas/microbiología , Nefropatías Diabéticas/psicología , Nefropatías Diabéticas/fisiopatología , Femenino , Estudios Transversales , Persona de Mediana Edad , Fallo Renal Crónico/microbiología , Fallo Renal Crónico/psicología , Fallo Renal Crónico/complicaciones , Anciano , Adulto , Estudios de Casos y Controles
2.
Neurologist ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853723

RESUMEN

OBJECTIVES: In this study, we investigated the difference in risk factors between the 2 diseases, aiming to further clarify who needs to do ischemic cerebrovascular disease (ICVD)-related screening among coronary artery disease (CAD) patients. METHODS: Clinical data of 326 patients with first-episode CAD from June 1, 2017, to July 31, 2020, in the Chinese PLA General Hospital were retrospectively reviewed. Outcomes, including clinical features and laboratory examination, were taken. Features related to ICVD including the extension of intracranial arterial (internal carotid artery intracranial segment, middle cerebral artery M1 segment, anterior cerebral A1 segment, vertebrobasilar artery intracranial segment, posterior cerebral artery P1 segment) and carotid arterial (internal carotid artery extracranial segment, common carotid artery, subclavian artery) stenosis were detected. Risk factors for the occurrence of ICVD in patients with CAD were analyzed. RESULTS: Among patients with the onset of CAD, in comparison of the nonstenosis and stenosis of intracranial artery subgroups, there were statistical differences in the onset age, hypertension, and duration of hypertension as well as the biochemical indicators, including high-density lipoprotein and glycosylated hemoglobin. In addition, statistical differences were detected in the onset age as well as the biochemical indicators, including glycosylated hemoglobin and blood glucose serum protein, along with the difference in the degree of cardiovascular stenosis. CONCLUSIONS: The onset age of CAD was shown to serve as a vital risk factor for ICVD. The primary prevention of ICVD in patients with CAD should lay more emphasis on the management of hypertension and diabetes.

3.
Small ; : e2401848, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940626

RESUMEN

For every epidemic outbreak, the prevention and treatments in resource-limited areas are always out of reach. Critical to this is that high accuracy, stability, and more comprehensive analytical techniques always rely on expensive and bulky instruments and large laboratories. Here, a fully integrated and high-throughput microfluidic system is proposed for ultra-multiple point-of-care immunoassay, termed Dac system. Specifically, the Dac system only requires a handheld portable device to automatically recycle repetitive multi-step reactions including on-demand liquid releasing, dispensing, metering, collecting, oscillatory mixing, and discharging. The Dac system performs high-precision enzyme-linked immunosorbent assays for up to 17 samples or targets simultaneously on a single chip. Furthermore, reagent consumption is only 2% compared to conventional ELISA, and microbubble-accelerated reactions shorten the assay time by more than half. As a proof of concept, the multiplexed detections are achieved by detecting at least four infection targets for two samples simultaneously on a singular chip. Furthermore, the barcode-based multi-target results can rapidly distinguish between five similar cases, allowing for accurate therapeutic interventions. Compared to bulky clinical instruments, the accuracy of clinical inflammation classification is 92.38% (n = 105), with a quantitative correlation coefficient of R2 = 0.9838, while the clinical specificity is 100% and the sensitivity is 98.93%.

4.
JAMA Netw Open ; 7(6): e2416786, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38904963

RESUMEN

Importance: An intermittent fasting plan consisting of 2 nonconsecutive fasting days and 5 days of habitual intake per week and meal replacement diet (5:2 MR) could provide additional benefits to patients with type 2 diabetes. Objective: To evaluate the effect of the 5:2 MR on glycemic control among patients with early type 2 diabetes compared with metformin and empagliflozin. Design, Setting, and Participants: The EARLY (Exploration of Treatment of Newly Diagnosed Overweight/Obese Type 2 Diabetes Mellitus) study is a randomized, open-label, active parallel-controlled clinical trial conducted between November 13, 2020, and December 29, 2022, in 9 centers across China. A total of 509 eligible patients underwent screening, out of which 405 were randomly assigned to 3 groups and included in the intention-to-treat analysis. Interventions: Patients were randomly allocated in a 1:1:1 ratio to receive either metformin, empagliflozin, or 5:2 MR. The treatment was 16 weeks, with an 8-week follow-up. Main Outcomes and Measures: The primary end point was the change in hemoglobin A1c (HbA1c) level from baseline to 16 weeks. Secondary end points included changes in body weight, anthropometric measurements, and biochemical parameters. Results: Of the 405 randomized participants (265 men [65.4%]; mean [SD] age, 45.5 [11.0] years; mean [SD] body mass index, 29.5 [4.1]; and mean [SD] HbA1c level, 7.9% [0.6%]), 332 completed the 16-week treatment. From baseline to week 16, participants in the 5:2 MR group showed the greatest reduction in HbA1c (least-squares mean [LSM], -1.9% [SE, 0.2%]), significantly greater than patients receiving metformin (LSM, -1.6% [SE, 0.2%]; adjusted LSM difference, -0.3% [95% CI, -0.4% to -0.1%]) and empagliflozin (LSM, -1.5% [SE, 0.2%]; adjusted LSM difference, -0.4% [95% CI, -0.6% to -0.2%]). At week 16, the mean weight loss in the 5:2 MR group (LSM, -9.7 kg [SE, 2.2 kg]) was greater than that in the metformin group (LSM, -5.5 kg [SE, 2.3 kg]) and empagliflozin group (LSM, -5.8 kg [SE, 2.3 kg]). Conclusions and Relevance: This randomized clinical trial of Chinese adults with overweight or obesity and with early type 2 diabetes found that 5:2 MR could improve glycemic outcomes and weight loss in the short term compared with metformin or empagliflozin, making it a promising initial intervention and early management for type 2 diabetes. Trial Registration: Chinese Clinical Trial Registry Identifier: ChiCTR2000040656.


Asunto(s)
Compuestos de Bencidrilo , Diabetes Mellitus Tipo 2 , Ayuno , Glucósidos , Control Glucémico , Metformina , Humanos , Masculino , Femenino , Persona de Mediana Edad , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ayuno/sangre , Metformina/uso terapéutico , Glucósidos/uso terapéutico , Compuestos de Bencidrilo/uso terapéutico , Control Glucémico/métodos , Adulto , Hemoglobina Glucada/análisis , Hipoglucemiantes/uso terapéutico , China , Glucemia/análisis , Glucemia/efectos de los fármacos , Ayuno Intermitente
5.
Stem Cell Res ; 79: 103465, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38880015

RESUMEN

Peripheral blood mononuclear cells (PBMCs) were obtained from a patient diagnosed with Familial Hemiplegic Migraine Type 3, who carried a heterozygous A > C mutation in the SCN1A gene and reprogrammed using CytoTuneTM-iPS 2.0 Sendai Reprogramming Kit. The iPSC line maintained the mutation while expressing markers of pluripotency. Additionally, it exhibited a normal karyotype and demonstrated potential for in vitro differentiation into cells representing all three embryonic germ layers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Leucocitos Mononucleares , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/citología , Diferenciación Celular , Línea Celular , Migraña con Aura/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Masculino , Femenino
6.
J Glob Health ; 14: 04110, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38803204

RESUMEN

Background: Epidemiological evidence suggests that there is an increased risk of coronary heart disease (CHD) related to jobs involving shift work (JSW), but the causality of and mechanism underlying such a relationship remain unclear. Therefore, we aimed to explore the relationship between JSW and CHD, investigating both causality and potential mediating factors. Methods: We performed univariate, multivariate, and mediation Mendelian randomisation (MR) analyses using data from large genome-wide association studies focussed on JSW and CHD, as well as data on some CHD risk factors (type 2 diabetes, hypertension, obesity, and lipids measurement) and 196 gut microbiota taxa. Single-nucleotide polymorphisms significantly associated with JSW acted as instrument variables. We used inverse-variance weighting as the primary method of analysis. Results: Bidirectional MR analysis indicated a robust effect of JSW on increased CHD risk; however, the existence of CHD did not affect the choice of JSW. We identified a mediating effects of type 2 diabetes and hypertension in this relationship, accounting for 11.89% and 14.80% of the total effect of JSW on CHD, respectively. JSW were also causally associated with the risk of type 2 diabetes and hypertension and had an effect on nine microbial taxa. The mediating influence of the Eubacterium brachy group at the genus level explained 16.64% of the total effect of JSW on hypertension. We found limited evidence for the causal effect of JSW on obesity and lipids measurements. Conclusions: Our findings suggest a causal effect of JSW on CHD, diabetes, and hypertension. We also found evidence for a significant connection between JSW and alterations in the gut microbiota. Considering that certain microbial taxa mediated the effect of JSW on hypertension risk, targeting gut microbiota through therapeutics could potentially mitigate high risks of hypertension and CHD associated with JSW.


Asunto(s)
Enfermedad Coronaria , Microbioma Gastrointestinal , Análisis de la Aleatorización Mendeliana , Horario de Trabajo por Turnos , Humanos , Enfermedad Coronaria/epidemiología , Enfermedad Coronaria/microbiología , Factores de Riesgo , Horario de Trabajo por Turnos/efectos adversos , Estudio de Asociación del Genoma Completo , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/microbiología , Polimorfismo de Nucleótido Simple , Análisis de Mediación , Hipertensión/epidemiología
7.
mBio ; 15(7): e0073524, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38819146

RESUMEN

Current microbiome signatures for chronic diseases such as diabetic kidney disease (DKD) are mainly based on low-resolution taxa such as genus or phyla and are often inconsistent among studies. In microbial ecosystems, bacterial functions are strain specific, and taxonomically different bacteria tend to form co-abundance functional groups called guilds. Here, we identified guild-level signatures for DKD by performing in-depth metagenomic sequencing and conducting genome-centric and guild-based analysis on fecal samples from 116 DKD patients and 91 healthy subjects. Redundancy analysis on 1,543 high-quality metagenome-assembled genomes (HQMAGs) identified 54 HQMAGs that were differentially distributed among the young healthy control group, elderly healthy control group, early-stage DKD patients (EDG), and late-stage DKD patients (LDG). Co-abundance network analysis classified the 54 HQMAGs into two guilds. Compared to guild 2, guild 1 contained more short-chain fatty acid biosynthesis genes and fewer genes encoding uremic toxin indole biosynthesis, antibiotic resistance, and virulence factors. Guild indices, derived from the total abundance of guild members and their diversity, delineated DKD patients from healthy subjects and between different severities of DKD. Age-adjusted partial Spearman correlation analysis showed that the guild indices were correlated with DKD disease progression and with risk indicators of poor prognosis. We further validated that the random forest classification model established with the 54 HQMAGs was also applicable for classifying patients with end-stage renal disease and healthy subjects in an independent data set. Therefore, this genome-level, guild-based microbial analysis strategy may identify DKD patients with different severity at an earlier stage to guide clinical interventions. IMPORTANCE: Traditionally, microbiome research has been constrained by the reliance on taxonomic classifications that may not reflect the functional dynamics or the ecological interactions within microbial communities. By transcending these limitations with a genome-centric and guild-based analysis, our study sheds light on the intricate and specific interactions between microbial strains and diabetic kidney disease (DKD). We have unveiled two distinct microbial guilds with opposite influences on host health, which may redefine our understanding of microbial contributions to disease progression. The implications of our findings extend beyond mere association, providing potential pathways for intervention and opening new avenues for patient stratification in clinical settings. This work paves the way for a paradigm shift in microbiome research in DKD and potentially other chronic kidney diseases, from a focus on taxonomy to a more nuanced view of microbial ecology and function that is more closely aligned with clinical outcomes.


Asunto(s)
Bacterias , Nefropatías Diabéticas , Heces , Microbioma Gastrointestinal , Metagenoma , Metagenómica , Humanos , Microbioma Gastrointestinal/genética , Nefropatías Diabéticas/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Masculino , Femenino , Heces/microbiología , Persona de Mediana Edad , Adulto , Anciano
8.
Small Methods ; : e2400454, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818744

RESUMEN

In microbiological research, traditional methods for bacterial screening and antibiotic susceptibility testing are resource-intensive. Microfluidics offers an efficient alternative with rapid results and minimal sample consumption, but the demand for cost-effective, user-friendly platforms persists in communities and hospitals. Inspired by the Magdeburg hemispheres, the strategy adapts to local conditions, leveraging omnipresent atmospheric pressure for self-sealing of Rotation-SlipChip (RSC) equipped with a 3D circular Christmas tree-like microfluidic concentration gradient generator. This innovative approach provides an accessible and adaptable platform for microbiological research and testing in diverse settings. The RSC can avoid leakage concerns during multiple concentration gradient generation, chip-rotating, and final long-term incubation reaction (≥24 h). Furtherly, RSC subtypes adapted to different reactions can be fabricated in less than 15 min with cost less than $1, the result can be read through designated observational windows by naked-eye. Moreover, the RSC demonstrates its capability for evaluating bacterial biomarker activity, enabling the rapid assessment of ß-galactosidase concentration and enzyme activity within 30 min, and the limit of detection can be reduced by 10-fold. It also rapidly determines the minimum antibiotic inhibitory concentration and antibiotic combined medications results within 4 h. Overall, these low-cost and user-friendly RSC make them invaluable tools in determinations at previously impractical environment.

9.
Lab Chip ; 24(12): 3158-3168, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38787694

RESUMEN

Point of care testing (POCT) of nucleic acids holds significant importance in the realm of infectious disease prevention and control, as well as the advancement of personalized precision medicine. Nevertheless, conventional nucleic acid testing methods continue to face challenges such as prolonged detection times and dependence on extensive specialized equipment and personnel, rendering them unsuitable for point of care applications. Here, we proposed an innovative active centrifugal microfluidic system (ACMS) for automatic nucleic acid extraction, encompassing modules for active valve control and magnetic control. An on-chip centrifugal puncture valve (PV) was devised based on the elastic tolerance differences between silicone membranes and tinfoils to release pre-embedded liquid reagents on demand. Furthermore, we have utilized the returnable valve (RV) technology to accurately control the retention and release of liquids, leveraging the high elastic tolerance of the silicone membrane. By incorporating an online controllable magnetic valve, we have achieved controlled and rapid aggregation and dispersion of magnetic beads. The final chip encapsulates multiple reagents and magnetic beads necessary for nucleic acid extraction. Upon sample addition and loading into the instrument, automated on-chip sample loading and nucleic acid extraction, purification, and collection can be accomplished within 30 minutes, halving the overall operation time and even increasing the efficiency of pseudovirus extraction by three orders of magnitude. Consequently, real-time fluorescence quantitative PCR amplification has successfully detected multiple targets of the SARS-CoV-2 virus (with an impressive detection limit as low as 10 copies per µL), along with targeted sequencing analysis yielding a conformity rate of 99%.


Asunto(s)
Centrifugación , Dispositivos Laboratorio en un Chip , Centrifugación/instrumentación , Humanos , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , Técnicas Analíticas Microfluídicas/instrumentación , Diseño de Equipo , Ácidos Nucleicos/aislamiento & purificación , Ácidos Nucleicos/análisis , ARN Viral/aislamiento & purificación , ARN Viral/análisis , COVID-19/diagnóstico , COVID-19/virología
10.
Cells ; 13(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38607029

RESUMEN

The oral mucosa represents a defensive barrier between the external environment and the rest of the body. Oral mucosal cells are constantly bathed in hypotonic saliva (normally one-third tonicity compared to plasma) and are repeatedly exposed to environmental stresses of tonicity, temperature, and pH by the drinks we imbibe (e.g., hypotonic: water, tea, and coffee; hypertonic: assorted fruit juices, and red wines). In the mouth, the broad-spectrum antiviral mediator MxA (a dynamin-family large GTPase) is constitutively expressed in healthy periodontal tissues and induced by Type III interferons (e.g., IFN-λ1/IL-29). Endogenously induced human MxA and exogenously expressed human GFP-MxA formed membraneless biomolecular condensates in the cytoplasm of oral carcinoma cells (OECM1 cell line). These condensates likely represent storage granules in equilibrium with antivirally active dispersed MxA. Remarkably, cytoplasmic MxA condensates were exquisitely sensitive sensors of hypotonicity-the condensates in oral epithelium disassembled within 1-2 min of exposure of cells to saliva-like one-third hypotonicity, and spontaneously reassembled in the next 4-7 min. Water, tea, and coffee enhanced this disassembly. Fluorescence changes in OECM1 cells preloaded with calcein-AM (a reporter of cytosolic "macromolecular crowding") confirmed that this process involved macromolecular uncrowding and subsequent recrowding secondary to changes in cell volume. However, hypertonicity had little effect on MxA condensates. The spontaneous reassembly of GFP-MxA condensates in oral epithelial cells, even under continuous saliva-like hypotonicity, was slowed by the protein-phosphatase-inhibitor cyclosporin A (CsA) and by the K-channel-blocker tetraethylammonium chloride (TEA); this is suggestive of the involvement of the volume-sensitive WNK kinase-protein phosphatase (PTP)-K-Cl cotransporter (KCC) pathway in the regulated volume decrease (RVD) during condensate reassembly in oral cells. The present study identifies a novel subcellular consequence of hypotonic stress in oral epithelial cells, in terms of the rapid and dynamic changes in the structure of one class of phase-separated biomolecular condensates in the cytoplasm-the antiviral MxA condensates. More generally, the data raise the possibility that hypotonicity-driven stresses likely affect other intracellular functions involving liquid-liquid phase separation (LLPS) in cells of the oral mucosa.


Asunto(s)
Proteínas de Resistencia a Mixovirus , Saliva , Humanos , Condensados Biomoleculares , Café , Células Epiteliales , Saliva/metabolismo , , Agua , Proteínas de Resistencia a Mixovirus/metabolismo
11.
J Headache Pain ; 25(1): 31, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443795

RESUMEN

BACKGROUND: Both epidemiological and clinical studies have indicated that headache and sleep disturbances share a complex relationship. Although headache and sleep share common neurophysiological and anatomical foundations, the mechanism underlying their interaction remains poorly understood. The structures of the diencephalon and brainstem, particularly the locus coeruleus (LC), are the primary sites where the sleep and headache pathways intersect. To better understand the intricate nature of the relationship between headache and sleep, our study focused on investigating the role and function of noradrenergic neurons in the LC during acute headache and acute sleep disturbance. METHOD: To explore the relationship between acute headache and acute sleep disturbance, we primarily employed nitroglycerin (NTG)-induced migraine-like headache and acute sleep deprivation (ASD) models. Initially, we conducted experiments to confirm that ASD enhances headache and that acute headache can lead to acute sleep disturbance. Subsequently, we examined the separate roles of the LC in sleep and headache. We observed the effects of drug-induced activation and inhibition and chemogenetic manipulation of LC noradrenergic neurons on ASD-induced headache facilitation and acute headache-related sleep disturbance. This approach enabled us to demonstrate the bidirectional function of LC noradrenergic neurons. RESULTS: Our findings indicate that ASD facilitated the development of NTG-induced migraine-like headache, while acute headache affected sleep quality. Furthermore, activating the LC reduced the headache threshold and increased sleep latency, whereas inhibiting the LC had the opposite effect. Additional investigations demonstrated that activating LC noradrenergic neurons further intensified pain facilitation from ASD, while inhibiting these neurons reduced this pain facilitation. Moreover, activating LC noradrenergic neurons exacerbated the impact of acute headache on sleep quality, while inhibiting them alleviated this influence. CONCLUSION: The LC serves as a significant anatomical and functional region in the interaction between acute sleep disturbance and acute headache. The involvement of LC noradrenergic neurons is pivotal in facilitating headache triggered by ASD and influencing the effects of headache on sleep quality.


Asunto(s)
Dolor Agudo , Neuronas Adrenérgicas , Trastornos Migrañosos , Trastornos del Sueño-Vigilia , Humanos , Locus Coeruleus , Trastornos del Sueño-Vigilia/complicaciones , Cefalea , Privación de Sueño , Sueño , Nitroglicerina
12.
Front Immunol ; 15: 1334158, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455050

RESUMEN

The prevalence of autoimmune diseases worldwide has risen rapidly over the past few decades. Increasing evidence has linked gut dysbiosis to the onset of various autoimmune diseases. Thanks to the significant advancements in high-throughput sequencing technology, the number of gut microbiome studies has increased. However, they have primarily focused on bacteria, so our understanding of the role and significance of eukaryotic microbes in the human gut microbial ecosystem remains quite limited. Here, we selected Graves' disease (GD) as an autoimmune disease model and investigated the gut multi-kingdom (bacteria, fungi, and protists) microbial communities from the health control, diseased, and medication-treated recovered patients. The results showed that physiological changes in GD increased homogenizing dispersal processes for bacterial community assembly and increased homogeneous selection processes for eukaryotic community assembly. The recovered patients vs. healthy controls had similar bacterial and protistan, but not fungal, community assembly processes. Additionally, eukaryotes (fungi and protists) may play a more significant role in gut ecosystem functions than bacteria. Overall, this study gives brief insights into the potential contributions of eukaryotes to gut and immune homeostasis in humans and their potential influence in relation to therapeutic interventions.


Asunto(s)
Enfermedades Autoinmunes , Microbioma Gastrointestinal , Enfermedad de Graves , Microbiota , Humanos , Microbioma Gastrointestinal/fisiología , Eucariontes , Bacterias
13.
Front Cell Infect Microbiol ; 14: 1349397, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533382

RESUMEN

Background: Graves' disease (GD), characterized by immune aberration, is associated with gut dysbiosis. Despite the growing interest, substantial evidence detailing the precise impact of gut microbiota on GD's autoimmune processes remains exceedingly rare. Objective: This study was designed to investigate the influence of gut microbiota on immune dysregulation in GD. Methods: It encompassed 52 GD patients and 45 healthy controls (HCs), employing flow cytometry and enzyme-linked immunosorbent assay to examine lymphocyte and cytokine profiles, alongside lipopolysaccharide (LPS) levels. Gut microbiota profiles and metabolic features were assessed using 16S rRNA gene sequencing and targeted metabolomics. Results: Our observations revealed a disturbed B-cell distribution and elevated LPS and pro-inflammatory cytokines in GD patients compared to HCs. Significant differences in gut microbiota composition and a marked deficit in short-chain fatty acid (SCFA)-producing bacteria, including ASV263(Bacteroides), ASV1451(Dialister), and ASV503(Coprococcus), were observed in GD patients. These specific bacteria and SCFAs showed correlations with thyroid autoantibodies, B-cell subsets, and cytokine levels. In vitro studies further showed that LPS notably caused B-cell subsets imbalance, reducing conventional memory B cells while increasing naïve B cells. Additionally, acetate combined with propionate and butyrate showcased immunoregulatory functions, diminishing cytokine production in LPS-stimulated cells. Conclusion: Overall, our results highlight the role of gut dysbiosis in contributing to immune dysregulation in GD by affecting lymphocyte status and cytokine production.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Graves , Humanos , Microbioma Gastrointestinal/genética , Disbiosis/complicaciones , ARN Ribosómico 16S/genética , Lipopolisacáridos , Enfermedad de Graves/complicaciones , Bacterias/genética , Citocinas
14.
Front Cell Infect Microbiol ; 14: 1356197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533385

RESUMEN

Purpose: This study aimed to investigate the composition of ocular surface microbiota in patients with obesity. Methods: This case-control study, spanning from November 2020 to March 2021 at Henan Provincial People's Hospital, involved 35 patients with obesity and an equivalent number of age and gender-matched healthy controls. By employing 16S rRNA sequencing, this study analyzed the differences in ocular surface microbiota between the two groups. The functional prediction analysis of the ocular surface microbiota was conducted using PICRUSt2. Results: The alpha diversity showed no notable differences in the richness or evenness of the ocular surface microbiota when comparing patients with obesity to healthy controls (Shannon index, P=0.1003). However, beta diversity highlighted significant variances in the microbiota composition of these two groups (ANOSIM, P=0.005). LEfSe analysis revealed that the relative abundances of Delftia, Cutibacterium, Aquabacterium, Acidovorax, Caulobacteraceae unclassified, Comamonas and Porphyromonas in patients with obesity were significantly increased (P<0.05). Predictive analysis using PICRUSt2 highlighted a significant enhancement in certain metabolic pathways in patients with obesity, notably xenobiotics metabolism via cytochrome P450 (CYP450), lipid metabolism, and the oligomerization domain (NOD)-like receptor signaling pathway (P<0.05). Conclusions: Patients with obesity exhibit a distinct ocular surface core microbiome. The observed variations in this microbiome may correlate with increased activity in CYP450, changes in lipid metabolism, and alterations in NOD-like receptor signaling pathways.


Asunto(s)
Ojo , Microbiota , Humanos , Estudios de Casos y Controles , ARN Ribosómico 16S , Obesidad
15.
J Immunol ; 212(4): 541-550, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38117282

RESUMEN

CD247, also known as CD3ζ, is a crucial signaling molecule that transduces signals delivered by TCR through its three ITAMs. CD3ζ is required for successful thymocyte development. Three additional alternatively spliced variants of murine CD247 have been described, that is, CD3ι, CD3θ, and CD3η, that differ from CD3ζ in the C terminus such that the third ITAM is lost. Previous studies demonstrated defects in T cell development in mice expressing CD3η, but the TCR signaling pathways affected by CD3η and the impacts of the CD3ι and CD3θ on T cell development were not explored. In this study, we used a retrovirus-mediated gene transfer technique to express these three isoforms individually and examined the roles of them on T cell development and activation. Rag1-/- mice reconstituted with CD3θ-expressing bone marrow failed to develop mature T cells. CD3ι-expressing T cells exhibited similar development and activation as cells expressing CD3ζ. In contrast, thymic development was severely impaired in CD3η-reconstituted mice. Single-positive but not double-positive CD3η-expressing thymocytes had reduced TCR expression, and CD5 expression was decreased at the double-positive stage, suggesting a defect in positive selection. Peripheral CD3η-expressing T cells had expanded CD44hi populations and upregulation of exhaustion markers seen by flow cytometry and RNA sequencing analysis. Analysis of early signaling events demonstrated significantly reduced activation of both the PLCγ1 and Akt/mTOR signaling pathways. There was also a reduction in the frequency of activation of CD3η-expressing T cells. These studies reveal the importance of the CD3ζ C-terminal region in T cell development and activation.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Timocitos , Animales , Ratones , Complejo CD3/genética , Complejo CD3/metabolismo , Diferenciación Celular/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Timocitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA