Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
2.
J Clin Invest ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316444

RESUMEN

Effective psychotherapy of post-traumatic stress disorder (PTSD) remains challenging due to the fragile nature of fear extinction, for which ventral hippocampal CA1 (vCA1) region is considered as a central hub. However, neither the core pathway nor the cellular mechanisms involved in implementing extinction are known. Here, we unveil a direct pathway, where layer 2a fan cells in the lateral entorhinal cortex (LEC) target parvalbumin-expressing interneurons (PV-INs) in the vCA1 region to propel low gamma-band synchronization of the LEC-vCA1 activity during extinction learning. Bidirectional manipulations of either hippocampal PV-INs or LEC fan cells sufficed fear extinction. Gamma entrainment of vCA1 by deep brain stimulation (DBS) or noninvasive transcranial alternating current stimulation (tACS) of LEC persistently enhanced the PV-IN activity in vCA1, thereby promoting fear extinction. These results demonstrate that the LEC-vCA1 pathway forms a top-down motif to empower low gamma-band oscillations that facilitate fear extinction. Finally, application of low gamma DBS and tACS to a mouse model with persistent PTSD showed potent efficacy, suggesting that the dedicated LEC-vCA1 pathway can be stimulated for therapy to remove traumatic memory trace.

3.
Nat Struct Mol Biol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227720

RESUMEN

Antibodies against N-methyl-D-aspartate receptors (NMDARs) are most frequently detected in persons with autoimmune encephalitis (AE) and used as diagnostic biomarkers. Elucidating the structural basis of monoclonal antibody (mAb) binding to NMDARs would facilitate the development of targeted therapy for AE. Here, we reconstructed nanodiscs containing green fluorescent protein-fused NMDARs to label and sort individual immune B cells from persons with AE and further cloned and identified mAbs against NMDARs. This allowed cryo-electron microscopy analysis of NMDAR-Fab complexes, revealing that autoantibodies bind to the R1 lobe of the N-terminal domain of the GluN1 subunit. Small-angle X-ray scattering studies demonstrated NMDAR-mAb stoichiometry of 2:1 or 1:2, structurally suitable for mAb-induced clustering and endocytosis of NMDARs. Importantly, these mAbs reduced the surface NMDARs and NMDAR-mediated currents, without tonically affecting NMDAR channel gating. These structural and functional findings imply that the design of neutralizing antibody binding to the R1 lobe of NMDARs represents a potential therapy for AE treatment.

5.
Mil Med Res ; 11(1): 49, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044298

RESUMEN

BACKGROUND: The development of ketamine-like rapid antidepressants holds promise for enhancing the therapeutic efficacy of depression, but the underlying cellular and molecular mechanisms remain unclear. Implicated in depression regulation, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is investigated here to examine its role in mediating the rapid antidepressant response. METHODS: The onset of antidepressant response was assessed through depression-related behavioral paradigms. The signaling mechanism of PACAP in the hippocampal dentate gyrus (DG) was evaluated by utilizing site-directed gene knockdown, pharmacological interventions, or optogenetic manipulations. Overall, 446 mice were used for behavioral and molecular signaling testing. Mice were divided into control or experimental groups randomly in each experiment, and the experimental manipulations included: chronic paroxetine treatments (4, 9, 14 d) or a single treatment of ketamine; social defeat or lipopolysaccharides-injection induced depression models; different doses of PACAP (0.4, 2, 4 ng/site; microinjected into the hippocampal DG); pharmacological intra-DG interventions (CALM and PACAP6-38); intra-DG viral-mediated PACAP RNAi; and opotogenetics using channelrhodopsins 2 (ChR2) or endoplasmic natronomonas halorhodopsine 3.0 (eNpHR3.0). Behavioral paradigms included novelty suppressed feeding test, tail suspension test, forced swimming test, and sucrose preference test. Western blotting, ELISA, or quantitative real-time PCR (RT-PCR) analysis were used to detect the expressions of proteins/peptides or genes in the hippocampus. RESULTS: Chronic administration of the slow-onset antidepressant paroxetine resulted in an increase in hippocampal PACAP expression, and intra-DG blockade of PACAP attenuated the onset of the antidepressant response. The levels of hippocampal PACAP expression were reduced in both two distinct depression animal models and intra-DG knockdown of PACAP induced depression-like behaviors. Conversely, a single infusion of PACAP into the DG region produced a rapid and sustained antidepressant response in both normal and chronically stressed mice. Optogenetic intra-DG excitation of PACAP-expressing neurons instantly elicited antidepressant responses, while optogenetic inhibition induced depression-like behaviors. The longer optogenetic excitation/inhibition elicited the more sustained antidepressant/depression-like responses. Intra-DG PACAP infusion immediately facilitated the signaling for rapid antidepressant response by inhibiting calcium/calmodulin-dependent protein kinase II (CaMKII)-eukaryotic elongation factor 2 (eEF2) and activating the mammalian target of rapamycin (mTOR). Pre-activation of CaMKII signaling within the DG blunted PACAP-induced rapid antidepressant response as well as eEF2-mTOR-brain-derived neurotrophic factor (BDNF) signaling. Finally, acute ketamine treatment upregulated hippocampal PACAP expression, whereas intra-DG blockade of PACAP signaling attenuated ketamine's rapid antidepressant response. CONCLUSIONS: Activation of hippocampal PACAP signaling induces a rapid antidepressant response through the regulation of CaMKII inhibition-governed eEF2-mTOR-BDNF signaling.


Asunto(s)
Depresión , Hipocampo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Transducción de Señal , Animales , Masculino , Ratones , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Paroxetina/farmacología , Paroxetina/uso terapéutico , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Transducción de Señal/efectos de los fármacos
6.
Artículo en Inglés | MEDLINE | ID: mdl-39047859

RESUMEN

Prior studies have investigated the immediate impacts of substances on temporal perception, the impact of temporal outlook, and the consequences of modified temporal perception on addictive behaviors. These inquiries have provided valuable perspectives on the intricate associations between addiction and time perception, enriching the groundwork for forthcoming research and therapeutic strategies. This comprehensive review aims to further explore intricate correlation among diverse addictive substances-namely alcohol, cannabis, nicotine, opioids-and non-substance addictions such as internet gaming, elucidating their influence on temporal perception. Adhering to the PICOS method and adhering to PRISMA guidelines, we systematically reviewed and critically evaluated all existing research concerning temporal perception in individuals with substance and non-substance use disorders. Specifically, our analyses involved 31 pertinent articles encompassing six unique groups-alcohol, nicotine, cannabis, stimulants, opioids, and internet-related addictions-sourced from a pool of 551 papers. The findings revealed differences in time perception between addicts and control groups, as indicated by medium to large effect sizes (Hedge's g = 0.8, p < 0.001). However, the nature of these differences-whether they predominantly involve time overestimation or underestimation-is not yet definitively clear. This variability underscores the complexity of the relationship between addiction and temporal perception, paving the way for further research to unravel these intricate dynamics.


Asunto(s)
Conducta Adictiva , Trastornos Relacionados con Sustancias , Percepción del Tiempo , Humanos , Conducta Adictiva/psicología , Trastornos Relacionados con Sustancias/psicología , Percepción del Tiempo/fisiología
7.
J Affect Disord ; 359: 333-341, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38801920

RESUMEN

BACKGROUND: Neuroimmune plays an important role in major depressive disorders (MDD). N-linked protein glycosylation (NLG) might contribute to depression by regulating the neuroinflammatory response. As microglia is the main executor of neuroimmune function in the central neural system (CNS), targeting the process of N-linked protein glycosylation of microglia in the mice used for studying depression might potentially offer new avenues for the strategy for MDD. METHODS: The chronic unpredictable mild stress (CUMS) mouse model was established for the whole brain microglia isolating. Then, RNA samples of microglia were extracted for transcriptome sequencing and mRNA analysis. Immunofluorescence (IF) was used to identify the expression level of NLG-related enzyme, B4galt1, in microglia. RESULTS: The data showed that NLG was positively related to depression. Moreover, the NLG-related gene, B4galt1 increased expression in the microglia of CUMS mice. Then, the inhibition of NLG reversed the depressive behavior in CUMS mice. The expression level of B4galt1 in CUMS mice was upregulating following the NLG-inhibitor treatment. Similar results haven't been observed in neurons. Information obtained from these experiments showed increasing expression of B4galt1 in microglia following depressive-like behaviors. CONCLUSIONS: These findings indicate that NLG in microglia is associated with MDD, and suggest that therapeutically targeting NLG might be an effective strategy for depression. LIMITATIONS: How to modulate the B4galt1 or NLG pathways in microglia efficiently and economically request new technologies.


Asunto(s)
Trastorno Depresivo Mayor , Modelos Animales de Enfermedad , Microglía , Animales , Ratones , Microglía/metabolismo , Glicosilación , Trastorno Depresivo Mayor/metabolismo , Masculino , Estrés Psicológico/metabolismo , Estrés Psicológico/inmunología , Depresión/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Ratones Endogámicos C57BL , Encéfalo/metabolismo
8.
Neuropsychopharmacology ; 49(11): 1700-1710, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38714787

RESUMEN

Relapse is a major challenge in the treatment of drug addiction, and exercise has been shown to decrease relapse to drug seeking in animal models. However, the neural circuitry mechanisms by which exercise inhibits morphine relapse remain unclear. In this study, we report that 4-week treadmill training prevented morphine conditioned place preference (CPP) expression during abstinence by acting through the nucleus accumbens (NAc)-ventral pallidum (VP) pathway. We found that neuronal excitability was reduced in D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) following repeated exposure to morphine and forced abstinence. Enhancing the excitability of NAc D2-MSNs via treadmill training decreased the expression of morphine CPP. We also found that the effects of treadmill training were mediated by decreasing enkephalin levels and that restoring opioid modulation of GABA neurotransmission in the VP, which increased neurotransmitter release from NAc D2-MSNs to VP, decreased morphine CPP. Our findings suggest the inhibitory effect of exercise on morphine CPP is mediated by reversing morphine-induced neuroadaptations in the NAc-to-VP pathway.


Asunto(s)
Morfina , Núcleo Accumbens , Receptores de Dopamina D2 , Transmisión Sináptica , Ácido gamma-Aminobutírico , Animales , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Masculino , Morfina/farmacología , Receptores de Dopamina D2/metabolismo , Ratones , Ácido gamma-Aminobutírico/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Condicionamiento Físico Animal/fisiología , Condicionamiento Físico Animal/métodos , Ratones Endogámicos C57BL , Prosencéfalo Basal/efectos de los fármacos , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología
9.
BMC Public Health ; 24(1): 653, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429770

RESUMEN

Bulimia, which means a person has episodes of eating a very large amount of food (bingeing) during which the person feels a loss of control over their eating, is the most primitive reason for being overweight and obese. The extended literature has indicated that childhood emotional abuse has a close relationship with adverse mood states, bulimia, and obesity. To comprehensively understand the potential links among these factors, we evaluated a multiple mediation model in which anxiety/depression and bulimia were mediators between childhood emotional abuse and body mass index (BMI). A set of self-report questionnaires, including the Childhood Trauma Questionnaire (CTQ), Beck Anxiety Inventory, Beck Depression Inventory (BDI), and Eating Disorder Inventory (EDI), was sent out. Clinical data from 37 obese patients (age: 29.65 ± 5.35, body mass index (BMI): 37.59 ± 6.34) and 37 demographically well-matched healthy people with normal body weight (age: 31.35 ± 10.84, BMI: 22.16 ± 3.69) were included in the investigation. We first performed an independent t-test to compare all scales or subscale scores between the two groups. Then, we conducted Pearson correlation analysis to test every two variables' pairwise correlation. Finally, multiple mediation analysis was performed with BMI as the outcome variable, and childhood emotional abuse as the predictive variable. Pairs of anxiety, bulimia, and depression, bulimia were selected as the mediating variables in different multiple mediation models separately. The results show that the obese group reported higher childhood emotional abuse (t = 2.157, p = 0.034), worse mood state (anxiety: t = 5.466, p < 0.001; depression: t = 2.220, p = 0.030), and higher bulimia (t = 3.400, p = 0.001) than the healthy control group. Positive correlations were found in every pairwise combination of BMI, childhood emotional abuse, anxiety, and bulimia. Multiple mediation analyses indicate that childhood emotional abuse is positively linked to BMI (ß = 1.312, 95% CI = 0.482-2.141). The model using anxiety and bulimia as the multiple mediating variables is attested to play roles in the relationship between childhood emotional abuse and obesity (indirect effect = 0.739, 95% CI = 0.261-1.608, 56.33% of the total effect). These findings confirm that childhood emotional abuse contributes to adulthood obesity through the multiple mediating effects of anxiety and bulimia. The present study adds another potential model to facilitate our understanding of the eating psychopathology of obesity.


Asunto(s)
Cirugía Bariátrica , Bulimia , Pruebas Psicológicas , Autoinforme , Adulto , Humanos , Adulto Joven , Bulimia/epidemiología , Abuso Emocional , Ansiedad/epidemiología , Obesidad/epidemiología , Obesidad/psicología
10.
Heliyon ; 10(6): e26911, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38496847

RESUMEN

N6-methyladenosine (m6A) modification is a common RNA modification in the central nervous system and has been linked to various neurological disorders, including Alzheimer's disease (AD). However, the dynamic of mRNA m6A modification and m6A enzymes during the development of AD are not well understood. Therefore, this study examined the expression profiles of m6A and its enzymes in the development of AD. The results showed that changes in the expression levels of m6A regulatory factors occur in the early stages of AD, indicating a potential role for m6A modification in the onset of the disease. Additionally, the analysis of mRNA m6A expression profiles using m6A-seq revealed significant differences in m6A modification between AD and control brains. The genes with differential methylation were found to be enriched in GO and KEGG terms related to processes such as inflammation response, immune system processes. And the differently expressed genes (DEGs) are negatively lryassociated with genes involved in microglia hemostasis, but positively associated with genes related to "disease-associated microglia" (DAM) associated genes. These findings suggest that dysregulation of mRNA m6A modification may contribute to the development of AD by affecting the function and gene expression of microglia.

11.
Med ; 5(3): 201-223.e6, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38359839

RESUMEN

BACKGROUND: Addiction is a chronic and relapsing brain disorder. Despite numerous neuroimaging and neurophysiological studies on individuals with substance use disorder (SUD) or behavioral addiction (BEA), currently a clear neural activity signature for the addicted brain is lacking. METHODS: We first performed systemic coordinate-based meta-analysis and partial least-squares regression to identify shared or distinct brain regions across multiple addictive disorders, with abnormal resting-state activity in SUD and BEA based on 46 studies (55 contrasts), including regional homogeneity (ReHo) and low-frequency fluctuation amplitude (ALFF) or fractional ALFF. We then combined Neurosynth, postmortem gene expression, and receptor/transporter distribution data to uncover the potential molecular mechanisms underlying these neural activity signatures. FINDINGS: The overall comparison between addiction cohorts and healthy subjects indicated significantly increased ReHo and ALFF in the right striatum (putamen) and bilateral supplementary motor area, as well as decreased ReHo and ALFF in the bilateral anterior cingulate cortex and ventral medial prefrontal cortex, in the addiction group. On the other hand, neural activity in cingulate cortex, ventral medial prefrontal cortex, and orbitofrontal cortex differed between SUD and BEA subjects. Using molecular analyses, the altered resting activity recapitulated the spatial distribution of dopaminergic, GABAergic, and acetylcholine system in SUD, while this also includes the serotonergic system in BEA. CONCLUSIONS: These results indicate both common and distinctive neural substrates underlying SUD and BEA, which validates and supports targeted neuromodulation against addiction. FUNDING: This work was supported by the National Natural Science Foundation of China and Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health.


Asunto(s)
Conducta Adictiva , Trastornos Relacionados con Sustancias , Estados Unidos , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Corteza Prefrontal
12.
Adv Sci (Weinh) ; 11(12): e2306321, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38227367

RESUMEN

Paroxysmal kinesigenic dyskinesia (PKD) is associated with a disturbance of neural circuit and network activities, while its neurophysiological characteristics have not been fully elucidated. This study utilized the high-density electroencephalogram (hd-EEG) signals to detect abnormal brain activity of PKD and provide a neural biomarker for its clinical diagnosis and PKD progression monitoring. The resting hd-EEGs are recorded from two independent datasets and then source-localized for measuring the oscillatory activities and function connectivity (FC) patterns of cortical and subcortical regions. The abnormal elevation of theta oscillation in wildly brain regions represents the most remarkable physiological feature for PKD and these changes returned to healthy control level in remission patients. Another remarkable feature of PKD is the decreased high-gamma FCs in non-remission patients. Subtype analyses report that increased theta oscillations may be related to the emotional factors of PKD, while the decreased high-gamma FCs are related to the motor symptoms. Finally, the authors established connectome-based predictive modelling and successfully identified the remission state in PKD patients in dataset 1 and dataset 2. The findings establish a clinically relevant electroencephalography profile of PKD and indicate that hd-EEG can provide robust neural biomarkers to evaluate the prognosis of PKD.


Asunto(s)
Distonía , Humanos , Electroencefalografía , Encéfalo
14.
Eur Arch Psychiatry Clin Neurosci ; 274(2): 353-362, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37148307

RESUMEN

BACKGROUND: Relapse remains the major challenge in treatment of alcohol use disorder (AUD). Aberrant decision-making has been found as important cognitive mechanism underlying relapse, but factors associated with relapse vulnerability are unclear. Here, we aim to identify potential computational markers of relapse vulnerability by investigating risky decision-making in individuals with AUD. METHODS: Forty-six healthy controls and fifty-two individuals with AUD were recruited for this study. The risk-taking propensity of these subjects was investigated using the balloon analog risk task (BART). After completion of clinical treatment, all individuals with AUD were followed up and divided into a non-relapse AUD group and a relapse AUD group according to their drinking status. RESULTS: The risk-taking propensity differed significantly among healthy controls, the non-relapse AUD group, and the relapse AUD group, and was negatively associated with the duration of abstinence in individuals with AUD. Logistic regression models showed that risk-taking propensity, as measured by the computational model, was a valid predictor of alcohol relapse, and higher risk-taking propensity was associated with greater risk of relapse to drink. CONCLUSION: Our study presents new insights into risk-taking measurement and identifies computational markers that provide prospective information for relapse to drink in individuals with AUD.


Asunto(s)
Alcoholismo , Humanos , Estudios Prospectivos , Alcoholismo/psicología , Etanol , Consumo de Bebidas Alcohólicas/psicología , Recurrencia
15.
Cell Rep Med ; 5(1): 101347, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38151021

RESUMEN

Craving is central to methamphetamine use disorder (MUD) and both characterizes the disease and predicts relapse. However, there is currently a lack of robust and reliable biomarkers for monitoring craving and diagnosing MUD. Here, we seek to identify a neurobiological signature of craving based on individual-level functional connectivity pattern differences between healthy control and MUD subjects. We train high-density electroencephalography (EEG)-based models using data recorded during the resting state and then calculate imaginary coherence features between the band-limited time series across different brain regions of interest. Our prediction model demonstrates that eyes-open beta functional connectivity networks have significant predictive value for craving at the individual level and can also identify individuals with MUD. These findings advance the neurobiological understanding of craving through an EEG-tailored computational model of the brain connectome. Dissecting neurophysiological features provides a clinical avenue for personalized treatment of MUD.


Asunto(s)
Metanfetamina , Humanos , Metanfetamina/efectos adversos , Ansia/fisiología , Electroencefalografía , Encéfalo/diagnóstico por imagen
17.
Sci Adv ; 9(40): eadh0183, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37801508

RESUMEN

Spinal cord injury (SCI) often leads to physical limitations, persistent pain, and major lifestyle shifts, enhancing the likelihood of prolonged psychological stress and associated disorders such as anxiety and depression. The mechanisms linking stress with regeneration remain elusive, despite understanding the detrimental impact of chronic stress on SCI recovery. In this study, we investigated the effect of chronic stress on primary sensory axon regeneration using a preconditioning lesions mouse model. Our data revealed that chronic stress-induced mitochondrial cristae loss and a decrease in oxidative phosphorylation (OXPHOS) within primary sensory neurons, impeding central axon regrowth. Corticosterone, a stress hormone, emerged as a pivotal player in this process, affecting satellite glial cells by reducing Kir4.1 expression. This led to increased neuronal hyperactivity and reactive oxygen species levels, which, in turn, deformed mitochondrial cristae and impaired OXPHOS, crucial for axonal regeneration. Our study underscores the need to manage psychological stress in patients with SCI for effective sensory-motor rehabilitation.


Asunto(s)
Axones , Traumatismos de la Médula Espinal , Humanos , Ratones , Animales , Axones/metabolismo , Regeneración Nerviosa/fisiología , Fosforilación Oxidativa , Neuronas/metabolismo , Traumatismos de la Médula Espinal/patología
18.
Transl Psychiatry ; 13(1): 315, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821461

RESUMEN

Cognitive impairment is a core feature of schizophrenia, which is aggravated by antipsychotics-induced metabolic disturbance and lacks effective pharmacologic treatments in clinical practice. Our previous study demonstrated the efficiency of metformin in alleviating metabolic disturbance following antipsychotic administration. Here we report that metformin could ameliorate cognitive impairment and improve functional connectivity (FC) in prefrontal regions. This is an open-labeled, evaluator-blinded study. Clinically stable patients with schizophrenia were randomly assigned to receive antipsychotics plus metformin (N = 48) or antipsychotics alone (N = 24) for 24 weeks. The improvement in cognition was assessed by the MATRICS Consensus Cognitive Battery (MCCB). Its association with metabolic measurements, and voxel-wise whole-brain FC with dorsolateral prefrontal cortex (DLPFC) subregions as seeds were evaluated. When compared to the antipsychotics alone group, the addition of metformin resulted in significantly greater improvements in the MCCB composite score, speed of processing, working memory, verbal learning, and visual learning. A significant time × group interaction effect of increased FC between DLPFC and the anterior cingulate cortex (ACC)/middle cingulate cortex (MCC), and between DLPFC subregions were observed after metformin treatment, which was positively correlated with MCCB cognitive performance. Furthermore, the FC between left DLPFC A9/46d to right ACC/MCC significantly mediated metformin-induced speed of processing improvement; the FC between left A46 to right ACC significantly mediated metformin-induced verbal learning improvement. Collectively, these findings demonstrate that metformin can improve cognitive impairments in schizophrenia patients and is partly related to the FC changes in the DLPFC. Trial Registration: The trial was registered with ClinicalTrials.gov (NCT03271866). The full trial protocol is provided in Supplementary Material.


Asunto(s)
Antipsicóticos , Disfunción Cognitiva , Esquizofrenia , Humanos , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico , Corteza Prefontal Dorsolateral , Imagen por Resonancia Magnética , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Cognición , Antipsicóticos/uso terapéutico , Corteza Prefrontal/metabolismo
20.
Nat Aging ; 3(10): 1288-1311, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37697166

RESUMEN

As important immune cells, microglia undergo a series of alterations during aging that increase the susceptibility to brain dysfunctions. However, the longitudinal characteristics of microglia remain poorly understood. In this study, we mapped the transcriptional and epigenetic profiles of microglia from 3- to 24-month-old mice. We first discovered unexpected sex differences and identified age-dependent microglia (ADEM) genes during the aging process. We then compared the features of aging and reactivity in female microglia at single-cell resolution and epigenetic level. To dissect functions of aged microglia excluding the influence from other aged brain cells, we established an accelerated microglial turnover model without directly affecting other brain cells. By this model, we achieved aged-like microglia in non-aged brains and confirmed that aged-like microglia per se contribute to cognitive decline. Collectively, our work provides a comprehensive resource for decoding the aging process of microglia, shedding light on how microglia maintain brain functions.


Asunto(s)
Disfunción Cognitiva , Microglía , Femenino , Ratones , Masculino , Animales , Encéfalo , Envejecimiento/genética , Disfunción Cognitiva/genética , Epigénesis Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA