RESUMEN
The Chuanzang black (CB) pig is a new crossbred between Chinese local breeds and modern breeds. Here, we investigated the growth performance, plasma indexes, carcass traits, and meat quality characteristics of conventional DLY (Duroc × Landrace × Yorkshire) crossbreed and CB pigs. The LC-MS/MS-based metabolomics of pork from DLY and CB pigs, as well as the relationship between the changes in the metabolic spectrum and meat quality, were analyzed. In this study, CB pigs presented lower final body weight, average daily gain, carcass weight, and eye muscle area than DLY pigs (p Ë 0.05). Conversely, the ratio of feed to gain, marbling score, and meat color score of longissimus dorsi (LD) were higher in CB than DLY pigs (p Ë 0.05). Moreover, psoas major (PM) showed a higher meat color score and a lower cooking loss in CB than DLY pigs (p Ë 0.05). Interestingly, CB pigs showed lower myofiber diameter and area but higher myofiber density than DLY pigs (p Ë 0.05). Furthermore, the mRNA expression levels of MyHC I, PPARδ, MEF2C, NFATC1, and AMPKα1 were higher in CB than DLY pigs (p Ë 0.05). Importantly, a total of 753 metabolites were detected in the two tissues (e.g., psoas major and longissimus dorsi) of CB and DLY pigs, of which the difference in metabolite profiles in psoas major between crossbreeds was greater than that in longissimus dorsi. Specifically, palmitic acid, stearic acid, L-aspartic acid, corticosterone, and tetrahydrocorticosterone were the most relevant metabolites of psoas major meat quality, and tetrahydrocorticosterone, L-Palmitoylcarnitine, arachidic acid, erucic acid, and 13Z,16Z-docosadienoic acid in longissimus dorsi meat were positively correlated with meat quality. The most significantly enriched KEGG pathways in psoas major and longissimus dorsi pork were galactose metabolism and purine metabolism, respectively. These results not only indicated improved meat quality in CB pigs as compared to DLY pigs but may also assist in rational target selection for nutritional intervention or genetic breeding in the swine industry.
RESUMEN
The present study investigated the effects of methionine (Met) on growth, immune function, and antioxidant capacity in partridge shank broilers, which were treated with either an anticoccidial drug or a coccidia vaccine. Chickens were fed five graded levels of Met (0.33%, 0.39%, 0.45%, 0.51%, or 0.57%) for 21 days in combination with the drug or vaccine. The results revealed that an optimal level of Met supplementation (1) increased ADFI (average daily feed intake), ADG (average daily gain), and F/G values (feed-to-gain ratio), indicating improved production; (2) increased OPG levels (oocysts per gram feces), intestinal lesion scores, bursa of Fabricius and thymus indexes, and sIgA content; (3) improved GSH-Px activities, and increased content levels of T-protein, albumin, and urea nitrogen. In addition, birds in the anticoccidial drug group had higher final weights, higher ADFI and ADG values, as well as lower F/G values, compared with birds in the vaccine group, indicating that coccidia vaccine reduces the performance of broilers. In conclusion, we found that an optimal level of dietary Met improved the production of partridge shank broilers, and this result might be related to immune function and antioxidant capacity. Optimal levels of digestible Met in terms of production performance (ADG and F/G) and immune function (sIgA in ileum mucosa) in partridge shank broilers (1-21 days) were found to be 0.418, 0.451, and 0.451 of diet, respectively, when birds were given anticoccidial drug treatment, with corresponding figures of 0.444, 0.455, and 0.452% when the coccidia vaccine was administered.
RESUMEN
To investigate the effects and potential mechanisms of dietary choline on immune function in the skin of juvenile grass carp (Ctenopharyngodon idella), fish were fed different diets containing different levels of choline (142. 2, 407.4, 821.6, 1215.8, 1589.3, and 1996.6 mg/kg) for 70 d and then sampled after a 6-d challenge test. The results exhibited that dietary choline (1) advanced the contents of phosphatidylcholine (PC), betaine, and choline in grass carp skin (P < 0.05) and upregulated the mRNA abundance of choline transporter high-affinity choline transporter 1 (CHT1), choline transporter-like protein 1 (CTL1), and choline transporter-like protein 5 (CTL5), indicating that dietary choline could increase the contents of choline which might be connected with choline transporters in the grass carp skin; (2) receded skin rot symptom after infection with A. hydrophila (Aeromonas hydrophila), increased the levels of IgM, C4, and C3 and the activities of acid phosphatase (ACP) and lysozyme (LZ), raised mucin2, ß-defensin, hepcidin, and LEAP-2B mRNA abundance (rather than LEAP-2A), downregulated pro-inflammatory cytokine mRNA abundance (IFN-γ2, IL-15, TNF-α, IL-6, IL-12P40, and IL-1ß) in skin of juvenile grass carp (P < 0.05), and upregulated anti-inflammatory cytokine mRNA abundance (IL-10, IL-4/13A, TGF-ß1, IL-11, and IL-4/13B) in grass carp skin (P < 0.05), demonstrating that choline enhanced the skin immune function; and (3) downregulated the mRNA abundance of IKKγ, NF-κBp52, IKKß, c-Rel, NF-κBp65, STAT3b2, STAT3b1, JAK1, and JAK2 as well as protein level of NF-κBp65, p-STAT3 Tyr705, and p-STAT3 Ser727 in nucleus and inhibited the mRNA and protein level of IkBα (P < 0.05), indicating that choline-enhanced immune function might be relevant to the JAK1, 2 /STAT3, and NF-κB signaling pathway in fish skin. In conclusion, choline enhanced the skin immune function which might be related to JAK1, 2/STAT3, and NF-κB signaling molecules in fish. Furthermore, based on immune indices of grass carp (9.28-108.97 g) skin (C3 and IgM contents as well as ACP activities), the choline requirements were estimated to be 1475.81, 1364.24, and 1574.37 mg/kg diet, respectively.