RESUMEN
Microorganisms, particularly extremophiles, have evolved multiple adaptation mechanisms to address diverse stress conditions during survival in unique environments. Their responses to environmental coercion decide not only survival in severe conditions but are also an essential factor determining bioproduction performance. The design of robust cell factories should take the balance of their growing and bioproduction into account. Thus, mining and redesigning stress-tolerance elements to optimize the performance of cell factories under various extreme conditions is necessary. Here, we reviewed several stress-tolerance elements, including acid-tolerant elements, saline-alkali-resistant elements, thermotolerant elements, antioxidant elements, and so on, providing potential materials for the construction of cell factories and the development of synthetic biology. Strategies for mining and redesigning stress-tolerance elements were also discussed. Moreover, several applications of stress-tolerance elements were provided, and perspectives and discussions for potential strategies for screening stress-tolerance elements were made.
RESUMEN
The impact of climates on the radial growth of muti-species remains insufficiently understood in the climate-sensitive southeastern Tibetan Plateau, and this hampers an effective assessment of forest growth under the background of global warming. Here, we studied the growth-climate relationships of three major species (Abies georgei, Larix potaninii, and Picea likiangensis) on the Baima Snow Mountain (BSM) by using dendrochronology methods. We constructed basal area increment (BAI) residual chronologies based on the dated ring-width measurements and correlated the chronologies with four climate factors. We also calculated the contributions of each climate factor to species growth. We found that photothermal conditions played a more important role than moisture in modulating radial growth, and P. likiangensi presented the strongest sensitivity to climate change among the three species. The growing season (June and July) temperature positively affected the radial growth of three species. Winter (previous December and current January) SD negatively impacted the tree growth of A. georgei and P. likiangensis. Significant correlations between growth and precipitation were detected only in A. georgei (January and May). Warming since the beginning of the 1950s promoted the growth of A. georgei and P. likiangensis, while the same effect on L. potaninii growth was found in the recent 50 years.
RESUMEN
Soil salinization usually occurs in arid and semi-arid climate areas from 37 to 50 degrees north latitude and 73 to 123 degrees east longitude. These regions are inhabited by a large number of Coleopteran insects, which play an important role in the ecological cycle. However, little is known about the endosymbiotic microbial taxa and their biological characteristics in these insects. A study of endosymbiotic microorganisms of Coleoptera from Xinjiang, a typical arid and inland saline area, revealed that endosymbiont bacteria with salinity tolerance are common among the endosymbionts of Coleoptera. Functional prediction of the microbiota analysis indicated a higher abundance of inorganic ion transporters and metabolism in these endosymbiont strains. Screening was conducted on the tolerable 11% NaCl levels of Brevibacterium casei G20 (PRJNA754761), and differential metabolite and proteins were performed. The differential metabolites of the strain during the exponential and plateau phases were found to include benzene compounds, organic acids, and their derivatives. These results suggest that the endosymbiotic microorganisms of Coleoptera in this environment have adaptive evolution to extreme environments, and this group of microorganisms is also one of the important resources for mining saline and alkaline-tolerant chassis microorganisms and high-robustness enzymes. IMPORTANCE: Coleoptera insects, as the first largest order of insect class, have the characteristics of a wide variety and wide distribution. The arid and semi-arid climate makes it more adaptable. By studying the endosymbiont bacteria of Coleoptera insects, we can systematically understand the adaptability of endosymbiont bacteria to host and special environment. Through the analysis of endosymbiont bacteria of Coleoptera insects in different saline-alkali areas in arid and semi-arid regions of Xinjiang, it was found that bacteria in different host samples were resistant to saline-alkali stress. These results suggest that bacteria and their hosts co-evolved in response to this climate. Therefore, this study is of great significance for understanding the endosymbiont bacteria of Coleoptera insects and obtaining extremophile resources (Saline-alkali-resistant chassis strains with modification potential for the production of bulk chemicals and highly robust industrial enzymes).
Asunto(s)
Bacterias , Escarabajos , Simbiosis , Animales , Escarabajos/microbiología , Escarabajos/fisiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Álcalis/metabolismo , Filogenia , Microbiología del Suelo , Microbiota/fisiología , Salinidad , Tolerancia a la Sal , Clima DesérticoRESUMEN
In this study, a rapid, inexpensive, and accurate colorimetric sensor for detecting psychrophilic bacteria was designed, comprising gold (Au) nanoparticles (NPs) modified by d-amino acid (D-AA) as color-metric probes. Based on the aggregation of Au NPs induced by psychrophilic bacteria, a noticeable color shift occurred within 6 h. Depending on the various metabolic behaviors of bacteria to different D-AA, four primary psychrophilic bacteria in raw milk were successfully distinguished by learning the response patterns. Furthermore, the quantification of single bacteria and the practical application in milk samples could be realized. Notably, a rapid colorimetric method was constructed by combining Au/D-AA with antibiotics for the minimum inhibitory concentration of psychrophilic bacteria, which relied on differences in bacteria metabolic activity in response to diverse antibiotic treatments. Therefore, the method enables the rapid detection and susceptibility evaluation of psychrophilic bacteria, promoting clinical practicability and antibiotic management.
RESUMEN
Protein function prediction is essential for disease treatment and drug development; yet, traditional biological experimental methods are less efficient in annotating protein function, and existing automated methods fail to fully leverage protein multisource data. Here, we present MSF-PFP, a computational framework that fuses multisource data features to predict protein function with high accuracy. Our framework designs specific models for feature extraction based on the characteristics of various data sources, including a global-local-individual strategy for local location features. MSF-PFP then integrates extracted features through a multisource feature fusion model, ultimately categorizing protein functions. Experimental results demonstrate that MSF-PFP outperforms eight state-of-the-art models, achieving FMax scores of 0.542, 0.675, and 0.624 for the biological process (BP), molecular function (MF), and cellular component (CC), respectively. The source code and data set for MSF-PFP are available at https://swanhub.co/TianGua/MSF-PFP, facilitating further exploration and validation of the proposed framework. This study highlights the potential of multisource data fusion in enhancing protein function prediction, contributing to improved disease therapy and medication discovery strategies.
Asunto(s)
Proteínas , Programas InformáticosRESUMEN
Plant overcompensatory growth (OCG) is an important mechanism by which plant communities adapt to environmental disturbance. However, it is not clear whether plant OCG can occur in degraded alpine meadows. Here, we conducted a mowing experiment in an alpine meadow at three degradation levels (i.e., severe degradation, SD; moderate degradation, MD; and light degradation, LD) on the southeastern Qinghai-Tibetan Plateau from 2018 to 2020 to investigate plant OCG and its relationships with soil available nutrients, plant nutrient use efficiency (i.e., nitrogen use efficiency, NUE; and phosphorus use efficiency, PUE), and precipitation. The results showed that 1) the OCG of the plant community generally occurred across all degradation levels, and the OCG strength of the plant community decreased with mowing duration. Moreover, the OCG strength of the plant community in the SD treatment was significantly greater than that in the MD and LD treatments after two years of mowing (p < 0.05). 2) In LD and MD, the soil nitrate nitrogen (NO3-) and available phosphorus (AP) concentrations exhibited a decreasing trend (p < 0.05), while the soil ammonium nitrogen (NH4+) concentration did not change from 2018 to 2020 (p > 0.05). In the SD treatment, the soil NO3- concentration tended to decrease (p < 0.05), the NH4+ concentration tended to increase (p < 0.05), and the AP concentration exhibited an inverse parabolic trend (p < 0.05) from 2018 to 2020. 3) From 2018 to 2020, plant NUE and PUE exhibited decreasing trends at all degradation levels. 4) Plant nutrient use efficiency, which is regulated by complex plant-soil interactions, strongly controlled the OCG of the plant community along each degradation gradient. Moreover, precipitation not only directly promoted the OCG of the plant community but also indirectly affected it by regulating the structure of the plant community and plant nutrient use efficiency. These results suggest that the OCG of the plant community in degraded alpine meadows may benefit not only from the strong self-regulating capacity of the plant-soil system but also from humid climatic conditions.
Asunto(s)
Pradera , Plantas , Tibet , Plantas/metabolismo , Nitrógeno/análisis , Suelo/química , Fósforo/metabolismoRESUMEN
AIMS: In-depth studies on plant ion uptake and plant growth-promoting rhizobacteria (PGPR) at the molecular level will help to further reveal the effects of PGPR on plants and their interaction mechanisms under salt stress. METHODS: Cotton was inoculated with a PGPR-Enterobacter cloacae Rs-35, and the ion uptake capacity, membrane transporter protein activity, and expression of key genes were determined under salt stress. Changes in the endogenous hormone content of cotton were also determined. Further, the genome-wide metabolic pathway annotation of E. cloacae Rs-35 and its differential enrichment pathway analysis of multi-omics under salinity environments were performed. RESULTS: In a pot experiment of saline-alkali soil, E. cloacae Rs-35-treated cotton significantly increased its uptake of K+ and Ca2+ and decreased uptake of Na+, elevated the activity of the H+-ATPase, and increased the sensitivity of the Na+/H+ reverse transporter protein on the vesicle membrane. Meanwhile, inoculation with E. cloacae Rs-35 could promote cotton to maintain the indole-3-acetic acid (IAA) content under salt stress. Genome-wide annotation showed that E. cloacae Rs-35 was respectively annotated to 31, 38, and 130 related genes in osmotic stress, phytohormone and organic acid metabolism, and ion uptake metabolic pathway. Multi-omics differences analysis showed that E. cloacae Rs-35 were enriched to tryptophan metabolism, multiple amino acid biosynthesis, carbon and glucose synthesis, and oxidative phosphorylation metabolic pathways at the transcriptome, proteome, and metabolome. CONCLUSION: E. cloacae Rs-35 can promote cotton balance cell ion concentration, stabilize intracellular IAA changes, stimulate induction of systemic tolerance, and promote the growth of cotton plants under salt stress.
Asunto(s)
Enterobacter cloacae , Gossypium , Enterobacter cloacae/metabolismo , Gossypium/genética , Gossypium/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Desarrollo de la Planta , Estrés SalinoRESUMEN
BACKGROUND: Milk production traits are complex traits with vital economic importance in the camel industry. However, the genetic mechanisms regulating milk production traits in camels remain poorly understood. Therefore, we aimed to identify candidate genes and metabolic pathways that affect milk production traits in Bactrian camels. METHODS: We classified camels (fourth parity) as low- or high-yield, examined pregnant camels using B-mode ultrasonography, observed the microscopic changes in the mammary gland using hematoxylin and eosin (HE) staining, and used RNA sequencing to identify differentially expressed genes (DEGs) and pathways. RESULTS: The average standard milk yield over the 300 days during parity was recorded as 470.18 ± 9.75 and 978.34 ± 3.80 kg in low- and high-performance camels, respectively. Nine female Junggar Bactrian camels were subjected to transcriptome sequencing, and 609 and 393 DEGs were identified in the low-yield vs. high-yield (WDL vs. WGH) and pregnancy versus colostrum period (RSQ vs. CRQ) comparison groups, respectively. The DEGs were compared with genes associated with milk production traits in the Animal Quantitative Trait Loci database and in Alashan Bactrian camels, and 65 and 46 overlapping candidate genes were obtained, respectively. Functional enrichment and protein-protein interaction network analyses of the DEGs and candidate genes were conducted. After comparing our results with those of other livestock studies, we identified 16 signaling pathways and 27 core candidate genes associated with maternal parturition, estrogen regulation, initiation of lactation, and milk production traits. The pathways suggest that emerged milk production involves the regulation of multiple complex metabolic and cellular developmental processes in camels. Finally, the RNA sequencing results were validated using quantitative real-time PCR; the 15 selected genes exhibited consistent expression changes. CONCLUSIONS: This study identified DEGs and metabolic pathways affecting maternal parturition and milk production traits. The results provides a theoretical foundation for further research on the molecular mechanism of genes related to milk production traits in camels. Furthermore, these findings will help improve breeding strategies to achieve the desired milk yield in camels.
Asunto(s)
Camelus , Leche , Animales , Embarazo , Femenino , Camelus/genética , Lactancia/genética , Parto , Perfilación de la Expresión GénicaRESUMEN
OX40 (CD134), a member of the TNF receptor superfamily, is a widely studied costimulatory immune checkpoint. Several OX40 agonistic antibodies are in the clinical stage for cancer treatment, among which PF-04518600 is the leader and currently in phase II trial. It has been recognized that one potential mode of action for anti-OX40 antibodies is the deletion of intratumoral Tregs. Thus, a novel human anti-OX40 antibody, BAT6026, was generated with enhanced antibody dependent cellular cytotoxicity (ADCC) via fucose deletion to strengthen its Treg depletion activity. This characteristic of BAT6026 differentiates it from other previously reported anti-OX40 antibodies in the field of tumor therapy. The affinity of BT6026 to OX40 was 0.28nM, approximately 8 times stronger than that of PF-04518600. BAT6026 effectively competed for the binding of ligand OX40L to OX40, whereas PF-04518600 only partially competed. Moreover, compared to PF-04518600, BAT6026 activated T cells more effectively when clustered by FcγRs engagement and stimulated SEB-pretreated PBMCs to secrete IL-2 cytokines in vitro. In addition, BAT6026 demonstrated stronger anti-tumor activity than PF-04518600 in an OX40-humanized mouse MC38 tumor model. BAT6026 also showed a significantly synergistic effect on tumor inhibition when combined treatment with PD-1 antibody. Analysis of tumor-infiltrating T cells revealed that BAT6026 treatment significantly reduced Treg cells and increased CD8+ T cells in tumor. Preclinical safety assessment in non-human primates demonstrated a good safety profile for BAT6026. Together these data warrant further development of BAT6026 into clinical trials for patients with cancer.
RESUMEN
The bio-manufacturing of products with substantial commercial value, particularly polyhydroxyalkanoates (PHA), using cost-effective carbon sources through microorganisms, has garnered heightened attention from both the scientific community and industry over the past few decades. Opting for industrial PHA production from various organic wastes, spanning industrial, agricultural, municipal, and food-based sources, emerges as a wiser choice. This strategy not only eases the burden of recycling organic waste and curbs environmental pollution but also trims down PHA production costs, rendering these materials more competitive in commercial markets. In addition, PHAs are a family of renewable, environmentally friendly, fully biodegradable and biocompatible polyesters with a multitude of applications. This review provides an overview of recent developments in PHA production from organic wastes. It covers the optimization of diverse metabolic pathways for producing various types of PHA from organic waste sources, pre-treatment and downstream processing for PHA using unrelated organic wastes, and challenges in industrial production of PHA using unrelated organic waste feedstocks and the challenges faced in industrial PHA production from organic wastes, along with potential solutions. Lastly, this study suggests underlying research endeavors aimed at further enhancing of the feasibility of industrial PHA production from organic wastes as an alternative to current petroleum-based plastics in the near future.
RESUMEN
BACKGROUND: In camels, nasopharyngeal myiasis is caused by the larvae of Cephalopina titillator, which parasitize the tissues of nasal and paranasal sinuses, pharynx, and larynx. C. titillator infestation adversely affects the health of camels and decreases milk and meat production and even death. However, the C. titillator infestation in Bactrian camels has not been widely studied. METHODS: The present study was conducted to determine the prevalence and risk factors of C. titillator in Bactrian camels of northwestern Xinjiang. Suspected larvae recovered from infested camels were evaluated for C. titillator by microscopy and polymerase chain reaction. Nucleotide sequences of the partial mitochondrial cytochrome c oxidase subunit I (COX1) and cytochrome b (CYTB) genes from the C. titillator of camels were aligned from the NCBI database. Furthermore, the gross and histopathological alterations associated with C. titillator infestation were evaluated via pathological examination. RESULTS: Of 1263 camels examined 685 (54.2%) camels were infested with suspected C. titillator larvae. Different larval stages were topically detected in the nasal passages and pharynx of the camel heads. Microscopy analysis of the pharyngeal mucosa tissue revealed necrotic tissue debris and some inflammatory cells. Molecular detection of the larval COX1 and CYTB genes indicated that pathogen collected in Bactrian camels was C. titillator. The epidemiological study demonstrated that the prevalence rate of C.titillator infestation was significantly higher in camels of Bestierek Town Pasture (67.2%) and Karamagai Town Pasture (63.6%) compared to Kitagel Town Pasture (38.7%) and Qibal Town Pasture (35.8%) (P < 0.05). No significant difference was observed between the prevalence rates in male (52.6%) and female (54.6%) camels (P > 0.05). The prevalence was higher in warm (64.2%) than that in cold (48.4%) seasons (P < 0.001). The prevalence in camels with non-nomadic method (67.2%) was significantly higher than in animals with nomadic method (47.5%) (P < 0.001). The prevalence of C.titillator infestation was significantly higher in animals of aged 5-10 (60.1%) and aged > 10 (61.1%) years old compared to those of aged < 5 (31.7%) years old camels (P < 0.001). CONCLUSION: Our results confirm that there is a high prevalence of C. titillator in Bactrian camels from Xinjiang, closely related to age, season, pasture environment, and husbandry methods. Developing prevention, diagnosis, and control programs to prevent transmission is necessary.
Asunto(s)
Dípteros , Miasis , Animales , Camelus , China/epidemiología , Citocromos b , Complejo IV de Transporte de Electrones , Femenino , Larva , Masculino , Miasis/epidemiología , Miasis/veterinaria , PrevalenciaRESUMEN
Populus euphratica Oliv. has a high tolerance for drought, salinity, and alkalinity. The main purpose of this study is to explore the effects of environments of different salinity intensities on endophytic community structure and the possible roles of endophytes in the tolerance of host plants. The characterization of endogenous bacteria in diversity has been investigated by using the Illumina high-throughput sequencing technique. The research showed that endophytic bacteria of P. euphratica in an extremely saline environment had low species diversity, especially in sap tissue. The dominant phyla in all groups were Proteobacteria, Actinobacteria, and Bacteroidetes. Notably, Firmicutes (relative abundance >5%) was a different dominant phylum in the samples from the high-saline environment compared with the relatively low-saline-environment group. The linear discriminant analysis effect size (LEfSe) analysis found that there were significant differences in different saline environments of Cytophagaceae (family), Rhodobacteraceae (family), and Rhodobacterales (order). These results indicated that the composition of the endogenous bacterial community was related to the growth environment of host plants. The predictive analysis of KEGG pathways and enzymes showed that the abundance of some enzymes and metabolic pathways of endophytes of P. euphratica increased with the increase of soil salinity, and most of the enzymes were related to energy metabolism and carbohydrate metabolism. These findings suggested that the endogenous bacteria of the host plant had different expression mechanisms under different degrees of stress, and this mechanism was very obvious in the distribution of endophytes, while the function of the endogenous bacteria needs to be further explored. IMPORTANCE Euphrates poplar (Populus euphratica Oliv.), as the only tree species that grows in the desert, has tenacious vitality with the characteristics of cold tolerance, drought tolerance, salt-alkali tolerance, and wind-sand resistance. P. euphratica has a long growth cycle and a high growth rate, which can break wind, fix sand, green the environment, and protect farmland, making it an important afforestation tree species in arid and semiarid areas. The area of P. euphratica in Xinjiang accounts for 91.1% of its area in China. Studying the endophytic bacteria of P. euphratica can give people a systematic understanding of it and the adaptability of the endogenous flora to the host and special environments. In this study, by analyzing the endophytic bacteria of P. euphratica in different saline-alkali regions of Xinjiang, it was found that the bacteria in different tissues of P. euphratica changed with the change of soil salinity. Especially in the sap tissue of P. euphratica under extremely high salinity, the diversity of endogenous bacteria was significantly lower than that in other tissues. These differential bacteria under different salinities were mostly related to the stress resistance of themselves and the host. Not only that, we also selected a strain of Bacillus with high stress resistance from the tissues of P. euphratica, which can survive under the extreme conditions of 10% NaCl and pH 11. We obtained a genome completion map of this strain, named it Bacillus haynesii P19 (GenBank accession no. PRJNA648288), and tried to use it for fermentation but in a different work, so as to develop it into a promising industrial fermentation chassis bacterium. Therefore, this study was of great significance for the understanding of endophytic bacteria in P. euphratica and the acquisition of extremophilic microbial resources.
Asunto(s)
Populus , Álcalis/metabolismo , Bacterias/genética , Endófitos/genética , Humanos , Populus/genética , Populus/metabolismo , Salinidad , Arena , Suelo/químicaRESUMEN
The allocation pattern of plant biomass presents the strategy of the plant community to adopt environmental changes, while the driver of biomass allocation is still unclear in degraded alpine grassland ecosystems. To explore the issue, this study investigated the shoot-to-root (R/S) ratio, plant aboveground traits, and root competition of three functional groups (i.e., grasses, sedges, and forbs) at three degradation levels (i.e., no obvious degradation, ND; moderate degradation, MD; and severe degradation, SD) in an alpine meadow in the eastern Qinghai-Tibetan Plateau. The relationships among plant aboveground traits, root competition, and R/S ratio were tested using the structural equation model (SEM). The results showed that the shoot and root biomass tended to decrease, but the R/S ratio of the plant community did not change along the degradation gradient. Plant height, lateral spread, and leaf length of most plant functional groups reduced, while leaf width and leaf area of most plant functional groups did not change along the degradation gradients. The root competition ability (presented as the fraction of root biomass in total biomass) of sedges in MD was the lowest, while that of grasses was the highest. The effects of aboveground competition on the R/S ratio were non-linear because of the different roles of plant height, lateral spread, and leaf area in regulating the R/S ratio along the degradation gradient. In contrast, the effects of belowground competition on the R/S ratio were linear because belowground competition promoted the R/S ratio, and the strength of this effect reduced along the degradation gradient. These results indicate that plant competition might be a critical factor to maintain the high R/S ratio in degraded alpine meadows.
RESUMEN
BACKGROUND: Advances in DNA sequencing technologies have transformed our capacity to perform life science research, decipher the dynamics of complex soil microbial communities and exploit them for plant disease management. However, soil is a complex conglomerate, which makes functional metagenomics studies very challenging. RESULTS: Metagenomes were assembled by long-read (PacBio, PB), short-read (Illumina, IL), and mixture of PB and IL (PI) sequencing of soil DNA samples were compared. Ortholog analyses and functional annotation revealed that the PI approach significantly increased the contig length of the metagenomic sequences compared to IL and enlarged the gene pool compared to PB. The PI approach also offered comparable or higher species abundance than either PB or IL alone, and showed significant advantages for studying natural product biosynthetic genes in the soil microbiomes. CONCLUSION: Our results provide an effective strategy for combining long and short-read DNA sequencing data to explore and distill the maximum information out of soil metagenomics.
Asunto(s)
Metagenoma , Suelo , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Análisis de Secuencia de ADNRESUMEN
This research investigated the effects of camel whey protein (CWP) treatment on type 2 diabetes mellitus (T2DM) rats and insulin resistance (IR) HepG2 cell models. Body weight and fasting blood glucose were observed in type 2 diabetes mellitus (T2DM) rats every week, and biochemical parameters in serum samples were evaluated after 6 weeks. Antioxidant activity in the liver was estimated, and histological examination of the liver tissues was conducted. After CWP treatment, the glucose uptake and lipid accumulation were examined in insulin-resistant HepG2 cells. Our results indicated that CWP mitigated the body weight loss, reversed dyslipidemia, and inhibited the inflammatory response, in T2DM rats. Meanwhile, it protected the liver from being injured by reducing the level of oxidative stress. In the CWP group, the pathological changes were significantly reduced, while the liver lobule structure, liver cell arrangement, as well as congestion, edema, and vacuolization were improved. Our results from quantitative real-time PCR and western blot analyses showed that CWP could up-regulate the expression levels of insulin receptor substrate-2 (IRS-2), phosphoinositide3-kinase (PI3K), protein kinase B (AKT), and glycogen synthase (GS). An active protein component CWP8 was isolated and identified, which was shown to be able to stimulate glycogen synthesis and ameliorate lipid accumulation in IR HepG2 cells. These data indicate that CWP and CWP8 might act as potential natural products regulating glucose and lipid metabolism in T2DM.
Asunto(s)
Camelus , Complicaciones de la Diabetes/metabolismo , Hepatopatías/metabolismo , Hígado/efectos de los fármacos , Proteína de Suero de Leche/farmacología , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Hep G2 , Humanos , Resistencia a la Insulina/genética , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacosRESUMEN
In recent years, Au-based nanomaterials are widely used in nanomedicine and biosensors due to their excellent physical and chemical properties. However, these applications require Au NPs to have excellent stability in different environments, such as extreme pH, high temperature, high concentration ions, and various biomatrix. To meet the requirement of multiple applications, many synthetic substances and natural products are used to prepare highly stable Au NPs. Because of this, we aim at offering an update comprehensive summary of preparation high stability Au NPs. In addition, we discuss its application in nanomedicine. The contents of this review are based on a balanced combination of our studies and selected research studies done by worldwide academic groups. First, we address some critical methods for preparing highly stable Au NPs using polymers, including heterocyclic substances, polyethylene glycols, amines, and thiol, then pay attention to natural product progress Au NPs. Then, we sum up the stability of various Au NPs in different stored times, ions solution, pH, temperature, and biomatrix. Finally, the application of Au NPs in nanomedicine, such as drug delivery, bioimaging, photothermal therapy (PTT), clinical diagnosis, nanozyme, and radiotherapy (RT), was addressed concentratedly.
Asunto(s)
Hipertermia Inducida , Nanopartículas del Metal , Sistemas de Liberación de Medicamentos , Oro , Nanomedicina , PolímerosRESUMEN
Addition of nanomaterials into polymer matrix is a promising avenue to reinforce the mechanical properties of composites. In this work, chitosan-based hydrogels reinforced by cellulose nanofibers (CNFs) have been prepared by chitosan as matrix. The effect of CNFs (1vt%, 1.5vt% and 2vt%) on the structure-property relationship in mechanical, swelling capability, pH sensitivity and antibacterial have been investigated, respectively. Different from normal reinforced particle, CNFs with special fiber shape and abundant hydrogen bonding can form interconnected porous structure with chitosan hydrogel, which can spread stress and defer permanent damage under compressing. And the compressive strength increases nearly 20 % and swelling capacity achieve 140 %, when 1.5vt% CNFs added. Thanks to CNFs which obtained from apocynum venetum generated positive effect on the antibacterial rate against E. coli and S. aureus of composite hydrogel. It proves that CNFs display an excellent mechanical and antibacterial enhancement in composite, and it provided a new prospect for the rational selection of the different shapes and aspect ratio of reinforced materials. The obtained CNFs reinforced composite hydrogels could be potentially applied in antibacterial biological and food packaging area.
Asunto(s)
Quitosano , Nanofibras , Celulosa , Escherichia coli , Hidrogeles , Staphylococcus aureusRESUMEN
Total biosynthesis or whole-cell biocatalytic production of sulfated small molecules relies on the discovery and implementation of appropriate sulfotransferase enzymes. Although fungi are prominent biocatalysts and have been used to sulfate drug-like phenolics, no gene encoding a sulfotransferase enzyme has been functionally characterized from these organisms. Here, we identify a phenolic sulfotransferase, FgSULT1, by genome mining from the plant-pathogenic fungus Fusarium graminearum PH-1. We expressed FgSULT1 in a Saccharomyces cerevisiae chassis to modify a broad range of benzenediol lactones and their nonmacrocyclic congeners, together with an anthraquinone, with the resulting unnatural natural product (uNP) sulfates displaying increased solubility. FgSULT1 shares low similarity with known animal and plant sulfotransferases. Instead, it forms a sulfotransferase family with putative bacterial and fungal enzymes for phase II detoxification of xenobiotics and allelochemicals. Among fungi, putative FgSULT1 homologues are encoded in the genomes of Fusarium spp. and a few other genera in nonsyntenic regions, some of which may be related to catabolic sulfur recycling. Computational structure modeling combined with site-directed mutagenesis revealed that FgSULT1 retains the key catalytic residues and the typical fold of characterized animal and plant sulfotransferases. Our work opens the way for the discovery of hitherto unknown fungal sulfotransferases and provides a synthetic biological and enzymatic platform that can be adapted to produce bioactive sulfates, together with sulfate ester standards and probes for masked mycotoxins, precarcinogenic toxins, and xenobiotics.IMPORTANCE Sulfation is an expedient strategy to increase the solubility, bioavailability, and bioactivity of nutraceuticals and clinically important drugs. However, chemical or biological synthesis of sulfoconjugates is challenging. Genome mining, heterologous expression, homology structural modeling, and site-directed mutagenesis identified FgSULT1 of Fusarium graminearum PH-1 as a cytosolic sulfotransferase with the typical fold and active site architecture of characterized animal and plant sulfotransferases, despite low sequence similarity. FgSULT1 homologues are sparse in fungi but form a distinct clade with bacterial sulfotransferases. This study extends the functionally characterized sulfotransferase superfamily to the kingdom Fungi and demonstrates total biosynthetic and biocatalytic synthetic biological platforms to produce unnatural natural product (uNP) sulfoconjugates. Such uNP sulfates may be utilized for drug discovery in human and veterinary medicine and crop protection. Our synthetic biological methods may also be adapted to generate masked mycotoxin standards for food safety and environmental monitoring applications and to expose precarcinogenic xenobiotics.
Asunto(s)
Fusarium/genética , Sulfotransferasas/química , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Mutagénesis Sitio-Dirigida , Células VeroRESUMEN
BACKGROUND: Biosynthesis of leukotriene (LT) by arachidonic acid involves 5-lipoxygenase (5-LO) as an important precursor. Here, we evaluated the role of pseudohypericin (PHP) for its postulated 5-LO inhibitory activity along with a Cys-LT receptor antagonist zafirlukast (ZFL) against inflammatory response and tissue injury in mice. MATERIALS AND METHODS: The spinal injury was induced by two-level laminectomy of T6 and T7 vertebrae. The inflammation was assessed by histology, inflammatory mediators by enzyme-linked immunosorbent assay, apoptosis by Annexin-V, FAS staining, terminal deoxynucleoti-dyltransferase-mediated UTP end labeling (TUNEL) assay and expression of Bax and Bcl-2 by Western blot. Effect on motor recovery of hind limbs was evaluated for 10 days postinjury. RESULTS: The spinal injury resulted in tissue damage, apoptosis, edema, infiltration of neutrophils with increased expression of tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). The spinal tissue showed elevated levels of prostaglandin E2 (PGE2), and LTB4 and increased phosphorylation of injured extracellular signal-regulated kinase-1/2 (ERK1/2). The PHP, ZFL and combination decreased inflammation, tissue injury and infiltration of neutrophils. Treatment also decreased the levels of PGE2, phosphorylation of extracellular signal-regulated kinase-1/2 (pERK 1/2), LT, TNF-α and COX-2 with a marked reduction in apoptosis and improved the motor function. CONCLUSION: The present study confirmed 5-LO antagonist activity of PHP and established its neuroprotective role along with ZFL.
Asunto(s)
Antagonistas de Leucotrieno/administración & dosificación , Inhibidores de la Lipooxigenasa/administración & dosificación , Perileno/análogos & derivados , Traumatismos de la Médula Espinal/tratamiento farmacológico , Compuestos de Tosilo/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Quimioterapia Combinada , Indoles , Masculino , Ratones , Infiltración Neutrófila/efectos de los fármacos , Perileno/administración & dosificación , Fenilcarbamatos , Proteínas Proto-Oncogénicas c-bcl-2/análisis , Traumatismos de la Médula Espinal/fisiopatología , Sulfonamidas , Factor de Necrosis Tumoral alfa/análisisRESUMEN
This study investigated the mechanisms responsible for the neuroprotective effect of sildenafil citrate (SFC) on ischemia-reperfusion spinal cord (SC) injuries. Balloon occlusion of the thoracic aorta was used to induce SC ischemia. The animals (n=30) were separated into three groups: sham, SC injury with saline, and SC injury with 5mg/kg i.p. SFC treatment (SFC). The Basso, Beattie, and Bresnahan (BBB) score was determined to assess neurological function at different time intervals after reperfusion. After 48h, histopathology of the SC was assessed by triphenyltetrazolium chloride (TTC) and Nissl staining. Myeloperoxidase (MPO) activity was estimated using an MPO assay kit. Western blot and ELISA assays were performed to estimate interleukin 1 & 10 (IL-1 & IL-10), tumour necrosis factor α (TNF-α), and nuclear factor (NF-kB) levels in SC tissue homogenates. The study results suggest that treatment with SFC significantly increased neurological function compared with the SC group. In addition, SFC treatment reduced MPO activity compared with the SC group, which subsequently inhibited the infiltration of neutrophils into the SC. There was a significant (p<0.01) decrease in the expression of IL-1 and TNF-α, and an increase in the expression of IL-10 in SFC tissue homogenates compared with SC tissues. Moreover, SFC treatment inhibited the activation of NF-kB in the SC after injury. This study shows that SFC exerts a neuroprotective effect on the SC after ischemia/reperfusion injury by attenuating inflammatory mediators.