Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Bioorg Med Chem ; 15(18): 6182-92, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17596950

RESUMEN

We describe the development of a computational model for the prediction of the inhibition of K(+) flow through the hERG ion channel. Using a collection of 1075 discovery compounds with hERG inhibition measured in our standard patch-clamp electrophysiology assay, molecular features important for drug-induced inhibition were identified using a combination of statistical inference algorithms and manual hypothesis generation and testing. While many of the features used in the model reflect those referenced in the literature, several aspects of the model provide new insight into the role of physicochemical properties, electrostatics, and novel pharmacophores in hERG inhibition. Coefficients for these 10 features were then determined by least median squares regression, resulting in a model with an R(2) approximately 0.66 and RMS error (RMSe) of 0.47 log units for an external test set. Significant additional validation performed using a large collection of subsequent discovery data has been very encouraging with an R(2)=0.54 and an RMSe of 0.63 log units. The performance of the model across several different chemotypes is demonstrated and discussed.


Asunto(s)
Simulación por Computador , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/metabolismo , Preparaciones Farmacéuticas/metabolismo , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/química , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Técnicas de Placa-Clamp , Unión Proteica , Relación Estructura-Actividad Cuantitativa
2.
J Biol Chem ; 278(51): 51232-42, 2003 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-14532265

RESUMEN

The most common defect in cystic fibrosis, deletion of phenylalanine from position 508 of the cystic fibrosis transmembrane conductance regulator (Delta F508 CFTR), decreases the trafficking of this protein to the cell surface membrane. Previous studies have shown that low temperature and high concentrations of glycerol or trimethylamine N-oxide can partially counteract the processing defect of Delta F508 CFTR. The present study investigates whether physiologically relevant concentrations of organic solutes, accumulated by cotransporter proteins, can rescue the misprocessing of Delta F508 CFTR. Myoinositol alone or myoinositol, betaine, and taurine given sequentially increased the processing of core-glycosylated, endoplasmic reticulum-arrested Delta F508 CFTR into the fully glycosylated form of CFTR in IB3 cells or NIH 3T3 cells stably expressing Delta F508 CFTR. Pulse-chase experiments using transiently transfected COS7 cells demonstrated that organic solutes also increased the processing of the core-glycosylated form of green fluorescent protein-Delta F508 CFTR. Moreover, the prolonged half-life of the complex-glycosylated form of GFP-Delta F508 CFTR suggests that this treatment stabilized the mature form of the protein. In vitro studies of purified NBD1 stability and aggregation showed that myoinositol stabilized both the Delta F508 and wild type CFTR and inhibited Delta F508 misfolding. Most significantly, treatment of CF bronchial airway cells with these transportable organic solutes restores cAMP-stimulated single channel activity of both CFTR and outwardly rectifying chloride channel in the cell surface membrane and also restores a forskolin-stimulated macroscopic 36Cl- efflux. We conclude that organic solutes can repair CFTR functions by enhancing the processing of Delta F508 CFTR to the plasma membrane by stabilizing the complex-glycosylated form of Delta F508 CFTR.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Mutación del Sistema de Lectura , Compuestos Orgánicos/farmacología , Animales , Betaína/farmacología , Línea Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Electrofisiología , Glicosilación/efectos de los fármacos , Humanos , Inositol/farmacología , Pliegue de Proteína , Transporte de Proteínas/efectos de los fármacos , Taurina/farmacología , Transfección
3.
Cell Physiol Biochem ; 12(1): 1-8, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11914543

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette superfamily, is a cAMP-activated chloride channel. CFTR contains two transmembrane domains (TMDs), two nucleotide-binding domains (NBDs), and a regulatory (R) domain. We found that whole-cell CFTR-dependent Cl- currents in Xenopus laevis oocytes were sensitive to HgCl(2), suggesting that modification of endogenous cysteines alters channel activity. To understand better this phenomenon, site-directed mutagenesis was employed to generate both individual cysteine replacements and a version of the molecule with no cysteines in the hydrophobic sector. Each mutant displayed a forskolin/IBMX-activated Cl(-) conductance similar to wild type, indicating that none of the cysteines located within the TMDs is essential. Subsequent single-channel analysis of inside-out patches excised from HEK293 cells expressing either cysteine-less or wild-type CFTR showed that intracellular application of a membrane impermeant sulphydryl reagent, p-chloromercuribenzosulfonate (PCMBS), significantly reduced open probability without affecting ion selectivity or conductance. The cysteine-less molecule also acquired a voltage-dependent sensitivity to extracellular PCMBS not observed in the wild type, perhaps due to a more flexible conformation that allowed PCMBS access to the intracellular surface. Together, these experiments suggest that endogenous intracellular cysteines, located primarily within the NBDs and/or R domain, influence channel gating.


Asunto(s)
Cisteína/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Activación del Canal Iónico/fisiología , 1-Metil-3-Isobutilxantina/farmacología , Animales , Línea Celular , Cloruros/metabolismo , Colforsina/farmacología , Cisteína/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Expresión Génica , Humanos , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Riñón/citología , Riñón/efectos de los fármacos , Riñón/metabolismo , Mutagénesis Sitio-Dirigida , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Técnicas de Placa-Clamp , Inhibidores de Fosfodiesterasa/farmacología , Relación Estructura-Actividad , Reactivos de Sulfhidrilo/farmacología , Transfección , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA